论文标题
经典矢量暗物质背景中的粒子分散
Particle dispersion in the classical vector dark matter background
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
Interactions with a background medium modify in general the dispersion relation and canonical normalization of propagating particles. This can have an important phenomenological consequence when considering light dark matter coupling to quarks and leptons. In this paper, we address this issue in the vector dark matter background with the randomly distributed polarizations or a fixed polarization to the single direction. The observations associated with particle dispersion can give constraints on new light Abelian gauge boson models. Considering the solar neutrino transition and the electron mass measurement, stringent bounds can be put on the gauged $L_μ- L_τ$ model and the dark photon model. Moreover, the classical vector field turns out to induce drastic changes in the particle normalization, which rule out a significant parameter region of the generic vector dark matter model.