论文标题

FRC-Tounn:使用神经网络对连续纤维增强复合材料的拓扑优化

FRC-TOuNN: Topology Optimization of Continuous Fiber Reinforced Composites using Neural Network

论文作者

Chandrasekhar, Aaditya, Mirzendehdel, Amir, Behandish, Morad, Suresh, Krishnan

论文摘要

在本文中,我们提出了拓扑优化(TO)框架,以同时优化功能分级连续纤维增强复合材料(FRC)的基质拓扑和光纤分布。基于密度的当前方法用于FRC,都将基础有限元网格用于分析和设计表示。这构成了几个局限性,同时执行子元素纤维间距并产生高分辨率连续纤维。相比之下,我们提出了基于神经网络(NN)的网格独立表示,以捕获基质拓扑和纤维分布。基于隐式NN的表示可以比网格离散化更高的分辨率来实现几何和材料查询。这导致精确提取功能级别的连续纤维。此外,通过将有限元仿真整合到NN计算框架中,我们可以利用自动分化来进行端到端自动灵敏度分析,即,我们不再需要手动衍生繁琐的灵敏度表达。我们通过涉及各种目标函数的几个数值示例来证明该方法的有效性和计算效率。我们还表明,可以使用添加剂制造直接在高分辨率下直接制造优化的连续纤维增强复合材料。

In this paper, we present a topology optimization (TO) framework to simultaneously optimize the matrix topology and fiber distribution of functionally graded continuous fiber-reinforced composites (FRC). Current approaches in density-based TO for FRC use the underlying finite element mesh both for analysis and design representation. This poses several limitations while enforcing sub-element fiber spacing and generating high-resolution continuous fibers. In contrast, we propose a mesh-independent representation based on a neural network (NN) both to capture the matrix topology and fiber distribution. The implicit NN-based representation enables geometric and material queries at a higher resolution than a mesh discretization. This leads to the accurate extraction of functionally-graded continuous fibers. Further, by integrating the finite element simulations into the NN computational framework, we can leverage automatic differentiation for end-to-end automated sensitivity analysis, i.e., we no longer need to manually derive cumbersome sensitivity expressions. We demonstrate the effectiveness and computational efficiency of the proposed method through several numerical examples involving various objective functions. We also show that the optimized continuous fiber reinforced composites can be directly fabricated at high resolution using additive manufacturing.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源