论文标题
沉默比语音更甜蜜:使用沉默的自制模型来存储扬声器信息
Silence is Sweeter Than Speech: Self-Supervised Model Using Silence to Store Speaker Information
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
Self-Supervised Learning (SSL) has made great strides recently. SSL speech models achieve decent performance on a wide range of downstream tasks, suggesting that they extract different aspects of information from speech. However, how SSL models store various information in hidden representations without interfering is still poorly understood. Taking the recently successful SSL model, HuBERT, as an example, we explore how the SSL model processes and stores speaker information in the representation. We found that HuBERT stores speaker information in representations whose positions correspond to silences in a waveform. There are several pieces of evidence. (1) We find that the utterances with more silent parts in the waveforms have better Speaker Identification (SID) accuracy. (2) If we use the whole utterances for SID, the silence part always contributes more to the SID task. (3) If we only use the representation of a part of the utterance for SID, the silenced part has higher accuracy than the other parts. Our findings not only contribute to a better understanding of SSL models but also improve performance. By simply adding silence to the original waveform, HuBERT improved its accuracy on SID by nearly 2%.