论文标题

迭代式几何学几何形状跨指导网络,用于直观图像

Iterative Geometry-Aware Cross Guidance Network for Stereo Image Inpainting

论文作者

Li, Ang, Zhao, Shanshan, Zhang, Qingjie, Ke, Qiuhong

论文摘要

当前,基于深层卷积神经网络的单图像介入已取得了令人鼓舞的结果。但是,尚未对具有缺失区域的立体声图像进行介绍,这也是一个重大但不同的问题。立体声图像填充的一个关键要求是立体声一致性。为了实现这一目标,我们提出了一个迭代的几何形状跨指导网络(IGGNET)。 IGGNET包含两种关键成分,即几何学意识(GAA)模块和迭代交叉指导(ICG)策略。 GAA模块依赖于外两极的几何提示,并从一个视图到另一种视图学习了几何学意识的指导,这有助于使两个视图中相应的区域保持一致。但是,从共存的缺失地区学习指导是具有挑战性的。为了解决这个问题,提出了ICG策略,可以以迭代方式交替缩小两个观点的缺失区域。实验结果表明,我们提出的网络的表现优于最新的立体声图像介入模型和最先进的单图像介绍模型。

Currently, single image inpainting has achieved promising results based on deep convolutional neural networks. However, inpainting on stereo images with missing regions has not been explored thoroughly, which is also a significant but different problem. One crucial requirement for stereo image inpainting is stereo consistency. To achieve it, we propose an Iterative Geometry-Aware Cross Guidance Network (IGGNet). The IGGNet contains two key ingredients, i.e., a Geometry-Aware Attention (GAA) module and an Iterative Cross Guidance (ICG) strategy. The GAA module relies on the epipolar geometry cues and learns the geometry-aware guidance from one view to another, which is beneficial to make the corresponding regions in two views consistent. However, learning guidance from co-existing missing regions is challenging. To address this issue, the ICG strategy is proposed, which can alternately narrow down the missing regions of the two views in an iterative manner. Experimental results demonstrate that our proposed network outperforms the latest stereo image inpainting model and state-of-the-art single image inpainting models.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源