论文标题

在功能数据的背景下实现SPDE的可行中心限制定理

A feasible central limit theorem for realised covariation of SPDEs in the context of functional data

论文作者

Benth, Fred Espen, Schroers, Dennis, Veraart, Almut E. D.

论文摘要

本文在无限维度中建立了一种渐近理论,用于估计波动率。我们考虑了半连续性部分偏微分方程的温和溶液,并得出了半群调整后的已实现协变量(SARCV)的稳定中心限制,这是综合波动率的一致估计量,并且是实现的四边形协调对Hilbert空间的概括。此外,我们介绍了半群调整后的多重变体(SAMPV),并确定其较弱的法律。使用SAMPV,我们构建了出现在SARCV中心极限定理中的混合限制过程的渐近协方差的一致估计量,从而导致可行的渐近理论。最后,即使仅在离散的时空网格上可用观察值,我们即使观察结果才能应用结果。

This article establishes an asymptotic theory for volatility estimation in an infinite-dimensional setting. We consider mild solutions of semilinear stochastic partial differential equations and derive a stable central limit theorem for the semigroup adjusted realised covariation (SARCV), which is a consistent estimator of the integrated volatility and a generalisation of the realised quadratic covariation to Hilbert spaces. Moreover, we introduce semigroup adjusted multipower variations (SAMPV) and establish their weak law of large numbers; using SAMPV, we construct a consistent estimator of the asymptotic covariance of the mixed-Gaussian limiting process appearing in the central limit theorem for the SARCV, resulting in a feasible asymptotic theory. Finally, we outline how our results can be applied even if observations are only available on a discrete space-time grid.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源