论文标题

SAN-NET:学习概括以自动适应归一化的卒中病变分割的看不见的位点

SAN-Net: Learning Generalization to Unseen Sites for Stroke Lesion Segmentation with Self-Adaptive Normalization

论文作者

Yu, Weiyi, Huang, Zhizhong, Zhang, Junping, Shan, Hongming

论文摘要

由于中风是一种重要的脑血管疾病,因此对在医学成像场中对磁共振(MR)图像的自动中风病变分割(MR)图像具有很大的兴趣。尽管已经为这项任务提出了基于深度学习的模型,但由于不同扫描仪,成像协议和人群之间的较大地点间差异,因此很难将这些模型概括为看不见的地点,而且还很难。为了解决这个问题,我们引入了一个自适应归一化网络,称为SAN-NET,以实现在看不见的站点的中风病变细分的适应性概括。由传统的Z得分归一化和动态网络的促进,我们设计了一个掩盖的自适应实例归一化(MAIM),以最大程度地减少现场差异,该差异将不同站点的输入MR图像标准化为与位点无关的样式,通过从输入中动态学习仿射参数。 \ ie,Main可以牢固地转换强度值。然后,我们利用梯度逆转层迫使U-NET编码器与站点分类器一起学习站点不变的表示,这进一步改善了与MAIN结合的模型概括。最后,受到人脑的``假性对称性''的启发,我们引入了一种简单而有效的数据增强技术,称为对称性数据增强(SIDA),可以将其嵌入SANET中以使样本量增加一倍,同时使记忆消耗减半。在中风(ATLAS)v1.2数据集的基准测试结果的实验​​结果(包括9个不同站点的MR图像)表明,在````剩下的一个站点'''设置下表明,拟议的Sanet Sanet近来在定量计量和质疑的定量测量方面均已发布了``sanet ofer-form''环境。

There are considerable interests in automatic stroke lesion segmentation on magnetic resonance (MR) images in the medical imaging field, as stroke is an important cerebrovascular disease. Although deep learning-based models have been proposed for this task, generalizing these models to unseen sites is difficult due to not only the large inter-site discrepancy among different scanners, imaging protocols, and populations, but also the variations in stroke lesion shape, size, and location. To tackle this issue, we introduce a self-adaptive normalization network, termed SAN-Net, to achieve adaptive generalization on unseen sites for stroke lesion segmentation. Motivated by traditional z-score normalization and dynamic network, we devise a masked adaptive instance normalization (MAIN) to minimize inter-site discrepancies, which standardizes input MR images from different sites into a site-unrelated style by dynamically learning affine parameters from the input; \ie, MAIN can affinely transform the intensity values. Then, we leverage a gradient reversal layer to force the U-net encoder to learn site-invariant representation with a site classifier, which further improves the model generalization in conjunction with MAIN. Finally, inspired by the ``pseudosymmetry'' of the human brain, we introduce a simple yet effective data augmentation technique, termed symmetry-inspired data augmentation (SIDA), that can be embedded within SAN-Net to double the sample size while halving memory consumption. Experimental results on the benchmark Anatomical Tracings of Lesions After Stroke (ATLAS) v1.2 dataset, which includes MR images from 9 different sites, demonstrate that under the ``leave-one-site-out'' setting, the proposed SAN-Net outperforms recently published methods in terms of quantitative metrics and qualitative comparisons.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源