论文标题

超现实主义者:通过GAN进行半监督的代表性学习,以揭示异质性疾病相关的成像模式

Surreal-GAN:Semi-Supervised Representation Learning via GAN for uncovering heterogeneous disease-related imaging patterns

论文作者

Yang, Zhijian, Wen, Junhao, Davatzikos, Christos

论文摘要

已经将大量的机器学习方法应用于成像数据,从而实现了神经和神经精神疾病的临床相关成像特征的构建。通常,这种方法不会明确地对疾病效应的异质性进行建模,也不会通过不可解释的非线性模型对其进行处理。此外,无监督的方法可能会解析由影响大脑结构或功能的令人讨厌的混杂因素驱动的,而不是与感兴趣的病理学相关的异质性。另一方面,半监督的聚类方法旨在推导二分法的亚型成员身份,而忽略了疾病异质性在空间和时间上沿连续体延伸的事实。为了解决上述局限性,在此,我们提出了一种新颖的方法,称为超现实主义者(通过GAN进行半监督的表示学习)。使用横截面成像数据,在半监督聚类的原理(从正常对照到患者的聚类映射到患者的群集映射原理)下,超现实的GAN剖析了与疾病相关的异质性,提出了连续的维度表示,并在每个维度沿每个尺寸的患者疾病严重程度渗透。该模型首先学习了从正常控制(CN)域到患者(PT)域的转换函数,该域具有控制转换方向的潜在变量。逆映射函数以及对功能连续性的正则化,模式正交性和单调性也被施加,以确保转换函数捕获具有临床意义的有意义的成像模式。我们首先通过广泛的半合成实验验证了该模型,然后证明了其在捕获阿尔茨海默氏病(AD)中生物学上合理的成像模式方面的潜力。

A plethora of machine learning methods have been applied to imaging data, enabling the construction of clinically relevant imaging signatures of neurological and neuropsychiatric diseases. Oftentimes, such methods don't explicitly model the heterogeneity of disease effects, or approach it via nonlinear models that are not interpretable. Moreover, unsupervised methods may parse heterogeneity that is driven by nuisance confounding factors that affect brain structure or function, rather than heterogeneity relevant to a pathology of interest. On the other hand, semi-supervised clustering methods seek to derive a dichotomous subtype membership, ignoring the truth that disease heterogeneity spatially and temporally extends along a continuum. To address the aforementioned limitations, herein, we propose a novel method, termed Surreal-GAN (Semi-SUpeRvised ReprEsentAtion Learning via GAN). Using cross-sectional imaging data, Surreal-GAN dissects underlying disease-related heterogeneity under the principle of semi-supervised clustering (cluster mappings from normal control to patient), proposes a continuously dimensional representation, and infers the disease severity of patients at individual level along each dimension. The model first learns a transformation function from normal control (CN) domain to the patient (PT) domain with latent variables controlling transformation directions. An inverse mapping function together with regularization on function continuity, pattern orthogonality and monotonicity was also imposed to make sure that the transformation function captures necessarily meaningful imaging patterns with clinical significance. We first validated the model through extensive semi-synthetic experiments, and then demonstrate its potential in capturing biologically plausible imaging patterns in Alzheimer's disease (AD).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源