论文标题
血浆图像分类使用余弦相似性约束CNN
Plasma Image Classification Using Cosine Similarity Constrained CNN
论文作者
论文摘要
在实验室和自然界中,都广泛研究了血浆喷气机。天体物理物体,例如黑洞,活跃的银河核和年轻恒星物体通常以各种形式散发等离子体喷气。通过类似于天体物理等离子体等离子体实验的数据的可用性,对此类数据的分类可能会有助于研究实验的潜在物理学,还可以研究天体物理喷气机的研究。在这项工作中,我们使用深度学习来处理Caltech Spheromak实验的所有实验室等离子体图像,这些实验跨越了二十年。我们发现余弦相似性可以通过比较特征向量方向进行分类,并用作训练Alexnet进行血浆图像分类的损失函数。我们还为二进制和多类分类开发了一个简单的矢量方向比较算法。使用我们的算法,我们演示了93%精确的二进制分类,以区分不稳定的列与稳定的列和92%的小标签数据集的精确五向分类,其中包括三个类,这些类别对应于不同水平的扭结不稳定性。
Plasma jets are widely investigated both in the laboratory and in nature. Astrophysical objects such as black holes, active galactic nuclei, and young stellar objects commonly emit plasma jets in various forms. With the availability of data from plasma jet experiments resembling astrophysical plasma jets, classification of such data would potentially aid in investigating not only the underlying physics of the experiments but the study of astrophysical jets. In this work we use deep learning to process all of the laboratory plasma images from the Caltech Spheromak Experiment spanning two decades. We found that cosine similarity can aid in feature selection, classify images through comparison of feature vector direction, and be used as a loss function for the training of AlexNet for plasma image classification. We also develop a simple vector direction comparison algorithm for binary and multi-class classification. Using our algorithm we demonstrate 93% accurate binary classification to distinguish unstable columns from stable columns and 92% accurate five-way classification of a small, labeled data set which includes three classes corresponding to varying levels of kink instability.