论文标题

关于域适应和半监督学习中的因果关系:参数模型的信息理论分析

On Causality in Domain Adaptation and Semi-Supervised Learning: an Information-Theoretic Analysis for Parametric Models

论文作者

Wu, Xuetong, Gong, Mingming, Manton, Jonathan H., Aickelin, Uwe, Zhu, Jingge

论文摘要

无监督的领域适应性(UDA)和半监督学习(SSL)的最新进展,尤其是融合因果关系,导致了这些学习问题的方法学改善。但是,一种形式的理论解释了因果关系在UDA/SSL的概括性能中的作用。在本文中,我们将UDA/SSL方案视为$ M $标记的源数据和$ n $未标记的目标数据作为具有参数概率模型的不同因果设置下的培训实例。我们从信息理论的角度研究了目标领域预测的学习绩效(例如,过多的风险)。具体而言,我们区分了两种情况:学习问题称为因果学习,如果特征是原因,并且标签是效果,则称为抗果学习。我们表明,在因果学习中,仅当源和目标域之间的标签分布保持不变时,多余的风险取决于源样本的大小(\ frac {1} {m})$。在反作用学习中,我们表明,未标记的数据以通常$ o(\ frac {1} {n})$的速率主导性能。这些结果使数据样本量与学习问题的硬度之间的关系具有不同的因果机制。

Recent advancements in unsupervised domain adaptation (UDA) and semi-supervised learning (SSL), particularly incorporating causality, have led to significant methodological improvements in these learning problems. However, a formal theory that explains the role of causality in the generalization performance of UDA/SSL is still lacking. In this paper, we consider the UDA/SSL scenarios where we access $m$ labelled source data and $n$ unlabelled target data as training instances under different causal settings with a parametric probabilistic model. We study the learning performance (e.g., excess risk) of prediction in the target domain from an information-theoretic perspective. Specifically, we distinguish two scenarios: the learning problem is called causal learning if the feature is the cause and the label is the effect, and is called anti-causal learning otherwise. We show that in causal learning, the excess risk depends on the size of the source sample at a rate of $O(\frac{1}{m})$ only if the labelling distribution between the source and target domains remains unchanged. In anti-causal learning, we show that the unlabelled data dominate the performance at a rate of typically $O(\frac{1}{n})$. These results bring out the relationship between the data sample size and the hardness of the learning problem with different causal mechanisms.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源