论文标题

SUM:汇总生物医学机制的数据集

SuMe: A Dataset Towards Summarizing Biomedical Mechanisms

论文作者

Bastan, Mohaddeseh, Shankar, Nishant, Surdeanu, Mihai, Balasubramanian, Niranjan

论文摘要

语言模型可以阅读生物医学文本并解释讨论的生物医学机制吗?在这项工作中,我们介绍了一项生物医学机制汇总任务。生物医学研究经常研究一个实体(例如蛋白质或化学物质)如何在生物学背景下影响另一个实体背后的机制。这些出版物的摘要通常包括一组集中的句子,这些句子呈现有关此类关系,相关实验证据的相关陈述以及总结了关系基础机制的结论句子。我们利用这种结构并创建一个摘要任务,其中输入是句子的集合和摘要中的主要实体,并且输出包括关系和总结机制的句子。使用少量手动标记的机制句子,我们训练一个机制句子分类器来过滤大型生物医学抽象集合,并创建具有22K实例的摘要数据集。我们还将结论句子生成作为611k实例的预审任务。我们基准测试大型生物域语言模型的性能。我们发现,尽管训练训练的任务有助于提高性能,但最佳模型仅在32%的实例中产生可接受的机制输出,这表明该任务在生物医学语言理解和总结中面临着重大挑战。

Can language models read biomedical texts and explain the biomedical mechanisms discussed? In this work we introduce a biomedical mechanism summarization task. Biomedical studies often investigate the mechanisms behind how one entity (e.g., a protein or a chemical) affects another in a biological context. The abstracts of these publications often include a focused set of sentences that present relevant supporting statements regarding such relationships, associated experimental evidence, and a concluding sentence that summarizes the mechanism underlying the relationship. We leverage this structure and create a summarization task, where the input is a collection of sentences and the main entities in an abstract, and the output includes the relationship and a sentence that summarizes the mechanism. Using a small amount of manually labeled mechanism sentences, we train a mechanism sentence classifier to filter a large biomedical abstract collection and create a summarization dataset with 22k instances. We also introduce conclusion sentence generation as a pretraining task with 611k instances. We benchmark the performance of large bio-domain language models. We find that while the pretraining task help improves performance, the best model produces acceptable mechanism outputs in only 32% of the instances, which shows the task presents significant challenges in biomedical language understanding and summarization.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源