论文标题

基于磁性纳米虫中的梅隆的Qubits

Qubits based on merons in magnetic nanodisks

论文作者

Xia, Jing, Zhang, Xichao, Liu, Xiaoxi, Zhou, Yan, Ezawa, Motohiko

论文摘要

Merons和Skyrmions是经典的拓扑孤子。但是,当它们的大小是纳米级时,它们将成为量子机械对象。最近,提出了基于纳米级天空的量子计算。在这里,我们建议将纳米级梅隆在磁性纳米磁盘中用作量子,其中核心旋转的上下方向被指定为Qubit状态$ | 0 \ rangle $和$ | 1 \ rangle $。首先,我们从数字上表明,仅包含$ 7 $旋转的半径的梅隆可以在经典的铁磁纳米风险中稳定。然后,从理论上讲,我们通过明确构建任意相移门,Hadamard Gate和CNOT门来证明通用量子计算是可能的。它们由磁场或电流执行。它将用作长时间连贯时间的量子,作为其经典对应物的拓扑稳定性的残余。

Merons and skyrmions are classical topological solitons. However, they will become quantum mechanical objects when their sizes are of the order of nanometers. Recently, quantum computation based on nanoscale skyrmions was proposed. Here, we propose to use a nanoscale meron in a magnetic nanodisk as a qubit, where the up and down directions of the core spin are assigned to be the qubit states $|0\rangle$ and $|1\rangle$. First, we show numerically that a meron with the radius containing only $7$ spins can be stabilized in a ferromagnetic nanodisk classically. Then, we show theoretically that universal quantum computation is possible based on merons by explicitly constructing the arbitrary phase-shift gate, the Hadamard gate, and the CNOT gate. They are executed by magnetic field or electric current. It would serve as a qubit with long coherence time as a remnant of topological stability from its classical counterpart.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源