论文标题

变质测试和调试税收准备软件

Metamorphic Testing and Debugging of Tax Preparation Software

论文作者

Tizpaz-Niari, Saeid, Monjezi, Verya, Wagner, Morgan, Darian, Shiva, Reed, Krystia, Trivedi, Ashutosh

论文摘要

本文提出了一个数据驱动的框架,以提高美国税收准备软件系统的可信度。鉴于错误在此软件中对用户的法律含义,确保税务准备软件的合规性和可信度至关重要。开发用于税收准备系统的调试辅助工具的关键障碍是明确规格的不可用和获取甲壳的困难。我们认为,由于美国税法遵守先例的法律学说,因此必须与认为相似的个人相比,必须查看有关单个纳税人税收准备软件结果的规格。因此,这些规格自然可用,因为需要类似输入的软件上的属性提供了类似的输出。受变质测试范式的启发,我们将这些关系变质关系列为。 与法律和税务专家合作,我们阐述了来自美国各种内部税收服务(IRS)出版物的一系列具有挑战性的财产的变质关系,包括出版物596(赚取的所得税信用额),附表8812(合格的儿童/其他家属),以及表格8863(教育信用)。我们专注于我们的案例研究的开源税制准备软件,并制定随机测试案例生成策略,以系统地验证由变质关系指导的税收准备软件的正确性。我们通过使用易于解释的决策-tree模型在可疑实例上进行视觉解释软件的行为,从而进一步帮助这一测试案例生成。我们的工具发现了几个责任错误,其严重性的不同,从角落案例中的非稳定行为(当纳税申报表接近零时)到缺少软件更新版本中的资格条件。

This paper presents a data-driven framework to improve the trustworthiness of US tax preparation software systems. Given the legal implications of bugs in such software on its users, ensuring compliance and trustworthiness of tax preparation software is of paramount importance. The key barriers in developing debugging aids for tax preparation systems are the unavailability of explicit specifications and the difficulty of obtaining oracles. We posit that, since the US tax law adheres to the legal doctrine of precedent, the specifications about the outcome of tax preparation software for an individual taxpayer must be viewed in comparison with individuals that are deemed similar. Consequently, these specifications are naturally available as properties on the software requiring similar inputs provide similar outputs. Inspired by the metamorphic testing paradigm, we dub these relations metamorphic relations. In collaboration with legal and tax experts, we explicated metamorphic relations for a set of challenging properties from various US Internal Revenue Services (IRS) publications including Publication 596 (Earned Income Tax Credit), Schedule 8812 (Qualifying Children/Other Dependents), and Form 8863 (Education Credits). We focus on an open-source tax preparation software for our case study and develop a randomized test-case generation strategy to systematically validate the correctness of tax preparation software guided by metamorphic relations. We further aid this test-case generation by visually explaining the behavior of software on suspicious instances using easy to-interpret decision-tree models. Our tool uncovered several accountability bugs with varying severity ranging from non-robust behavior in corner-cases (unreliable behavior when tax returns are close to zero) to missing eligibility conditions in the updated versions of software.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源