论文标题

从数据中基于学习代理的模型

On learning agent-based models from data

论文作者

Monti, Corrado, Pangallo, Marco, Morales, Gianmarco De Francisci, Bonchi, Francesco

论文摘要

基于代理的模型(ABM)在几个字段中用于研究复杂系统从微观假设中的演变。但是,ABM通常无法估计特定于代理特定的(或“微型”)变量:这是一个主要限制,它可以防止ABMS利用微观数据可用性,并极大地限制了其预测能力。在本文中,我们提出了一项协议,以从数据中学习ABM的潜在微变量。我们协议的第一步是将ABM减少为概率模型,其特征在于计算上的可能性。这种降低遵循两个一般设计原则:随机性和数据可用性的平衡,以及更换具有可区分近似值的不可观察的离散选择。然后,我们的协议通过通过基于梯度的期望最大化算法最大化潜在变量的可能性来进行。我们通过将其应用于住房市场的ABM来证明我们的协议,在该计划中,收入不同的代理商更高的价格居住在高收入社区中。我们证明所获得的模型允许对潜在变量进行准确的估计,同时保留ABM的一般行为。我们还表明,我们的估计值可用于样本外预测。我们的协议可以看作是黑框数据同化方法的替代方法,该方法迫使建模者裸露模型的假设,思考推论过程并发现潜在的识别问题。

Agent-Based Models (ABMs) are used in several fields to study the evolution of complex systems from micro-level assumptions. However, ABMs typically can not estimate agent-specific (or "micro") variables: this is a major limitation which prevents ABMs from harnessing micro-level data availability and which greatly limits their predictive power. In this paper, we propose a protocol to learn the latent micro-variables of an ABM from data. The first step of our protocol is to reduce an ABM to a probabilistic model, characterized by a computationally tractable likelihood. This reduction follows two general design principles: balance of stochasticity and data availability, and replacement of unobservable discrete choices with differentiable approximations. Then, our protocol proceeds by maximizing the likelihood of the latent variables via a gradient-based expectation maximization algorithm. We demonstrate our protocol by applying it to an ABM of the housing market, in which agents with different incomes bid higher prices to live in high-income neighborhoods. We demonstrate that the obtained model allows accurate estimates of the latent variables, while preserving the general behavior of the ABM. We also show that our estimates can be used for out-of-sample forecasting. Our protocol can be seen as an alternative to black-box data assimilation methods, that forces the modeler to lay bare the assumptions of the model, to think about the inferential process, and to spot potential identification problems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源