论文标题
类型和本地Jacquet的单一性 - 伦敦通讯
Unicity of types and local Jacquet--Langlands correspondence
论文作者
论文摘要
令$ f $为非架构的本地领域。对于内部表格的任何不可约表示$ g'= \ mathrm {gl} _ {m} _ {m}(d)$ of $ g = \ mathrm {gl} _ {n}(f)$,在$ g'$ $ g'$ $ g'$中的最大压实子组的异常表示$ for ys $ gous for类型。然后,我们可以考虑这些类型在某种意义上是唯一的问题。如果对于$π$来说,这种类型是唯一的,我们说$π$具有类型的强大统一属性。另一方面,存在连接$ g'$和$ g $不可约的表示的信件,称为jacquet--langland通信。在本文中,我们研究了类型的强统一与雅克 - 兰德兰的对应关系之间的铺设。
Let $F$ be a non-archimedean local field. For any irreducible representation $π$ of an inner form $G'=\mathrm{GL}_{m}(D)$ of $G=\mathrm{GL}_{N}(F)$, there exists an irredubile representation of a maximal compact open subgroup in $G'$ which is also a type for $π$. Then we can consider the problem whether these types are unique or not in some sense. If such types for $π$ are unique, we say $π$ has the strong unicity property of types. On the other hand, there exists a correspondence connecting irreducible representations of $G'$ and $G$, called the Jacquet--Langland correspondence. In this paper, we study the ralation between the strong unicity of types and the Jacquet--Langlands correspondence.