论文标题
预先记录系统的模型:用于颗粒状薄膜磁性记录系统的多时间尺度微磁代码
Models of Advance Recording Systems: A Multi-timescale Micromagnetic code for granular thin film magnetic recording systems
论文作者
论文摘要
微磁建模提供了能够准确模拟大型磁系统的能力,而无需原子建模施加的计算成本限制。通过微磁建模,可以模拟由数千个纳秒到几年的时间范围内由数千个晶粒组成的系统,具体取决于所使用的求解器。在这里,我们介绍了一个开源和发布的多时间微磁代码,结合了三个关键求解器:Landau-Lifshitz-Gilbert; Landau-Lifshitz-Bloch;动力学蒙特卡洛。该代码称为MARS(高级记录系统的模型),能够准确模拟大型且结构复杂的单层和多层颗粒系统中的磁化动力学。通过实施的Landau-Lifshitz-Gilbert和Landau-Lifshitz-Bloch求解器,可以为远离Curie点的系统实现短时尺度模拟。这可以使读/写模拟用于一般垂直磁记录以及最新的热辅助磁记录(HAMR)。长时间的行为是通过动力学蒙特卡洛求解器模拟的,从而可以研究信噪比和数据寿命。这些求解器的组合打开了单个软件包中多次模拟的可能性。例如,通过使用MARS的单个模拟,可以通过单个模拟进行整个HAMR过程,从初始数据编写和数据读取到长期数据存储。在火星的材料输入中,使用原子参数化可以实现高度准确的材料描述,这些描述提供了原子模拟和现实世界实验之间的桥梁。因此,火星能够为记录媒体研发的各个方面进行模拟。从材料表征和优化到系统设计和实施。
Micromagnetic modelling provides the ability to simulate large magnetic systems accurately without the computational cost limitation imposed by atomistic modelling. Through micromagnetic modelling it is possible to simulate systems consisting of thousands of grains over a time range of nanoseconds to years, depending upon the solver used. Here we present the creation and release of an open-source multi-timescale micromagnetic code combining three key solvers: Landau-Lifshitz-Gilbert; Landau-Lifshitz-Bloch; Kinetic Monte Carlo. This code, called MARS (Models of Advanced Recording Systems), is capable of accurately simulating the magnetisation dynamics in large and structurally complex single- and multi-layered granular systems. The short timescale simulations are achieved for systems far from and close to the Curie point via the implemented Landau-Lifshitz-Gilbert and Landau-Lifshitz-Bloch solvers respectively. This enables read/write simulations for general perpendicular magnetic recording and also state of the art heat assisted magnetic recording (HAMR). The long timescale behaviour is simulated via the Kinetic Monte Carlo solver, enabling investigations into signal-to-noise ratio and data longevity. The combination of these solvers opens up the possibility of multi-timescale simulations within a single software package. For example the entire HAMR process from initial data writing and data read back to long term data storage is possible via a single simulation using MARS. The use of atomistic parameterisation for the material input of MARS enables highly accurate material descriptions which provide a bridge between atomistic simulation and real world experimentation. Thus MARS is capable of performing simulations for all aspects of recording media research and development. This ranges from material characterisation and optimisation to system design and implementation.