论文标题

建筑自动化系统数据集成与BIM:数据结构和支持案例研究

Building Automation System Data Integration with BIM: Data Structure and Supporting Case Study

论文作者

Quinn, Caroline, Shabestari, Ali Zargar, Litoiu, Marin, McArthur, J. J.

论文摘要

建筑物自动化系统(BAS)在当代建筑中无处不在,既监视建筑条件又管理建筑系统控制点。目前,这些控件具有规范性的,并且由设计团队预先确定,而不是对实际的建筑绩效做出响应。这些进一步受到规定的逻辑的限制,仅具有基本的可视化,并且缺乏更广泛的系统集成功能。机器学习,边缘分析,数据管理系统和设施管理的建筑信息模型(FM-BIMS)的进步允许一种新颖的方法:云托管建筑管理。本文提出了一种集成技术,用于将构建物联网(IoT)传感器网络的数据映射到FM-BIM。讨论和介绍了集成到数据结构中的传感器数据命名命名命名和时间表分析策略,包括使用3D嵌套列表允许允许将时间表数据映射到FM-BIM并易于可视化。开发的方法是通过一个由当地传感器网络组成的Office Living Lab的案例研究来介绍的,该实验室模仿了BAS,该实验室通过虚拟专用网络连接将其流到云服务器。提出了最终的数据结构和关键可视化,以证明这种方法的价值,这使最终用户可以选择所需的时间范围进行可视化,并很容易地浏览时空的建筑性能数据。

Buildings Automation Systems (BAS) are ubiquitous in contemporary buildings, both monitoring building conditions and managing the building system control points. At present, these controls are prescriptive and pre-determined by the design team, rather than responsive to actual building performance. These are further limited by prescribed logic, possess only rudimentary visualizations, and lack broader system integration capabilities. Advances in machine learning, edge analytics, data management systems, and Facility Management-enabled Building Information Models (FM-BIMs) permit a novel approach: cloud-hosted building management. This paper presents an integration technique for mapping the data from a building Internet of Things (IoT) sensor network to an FM-BIM. The sensor data naming convention and timeseries analysis strategies integrated into the data structure are discussed and presented, including the use of a 3D nested list to permit timeseries data to be mapped to the FM-BIM and readily visualized. The developed approach is presented through a case study of an office living lab consisting of a local sensor network mimicking a BAS, which streams to a cloud server via a virtual private network connection. The resultant data structure and key visualizations are presented to demonstrate the value of this approach, which permits the end-user to select the desired timeframe for visualization and readily step through the spatio-temporal building performance data.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源