论文标题

在有限温度下,对拓扑系统的lindblad动力学的UHLMANN载体

Uhlmann holonomy against Lindblad dynamics of topological systems at finite temperatures

论文作者

He, Yan, Chien, Chih-Chun

论文摘要

随着密度矩阵的纯化状态遍历参数空间中的环路,它反映了纯度阶段,已被用来表征有限温度下多个系统的拓扑特性。我们测试了由三个拓扑系统的Lindblad方程描述的量子动力学中各种系统环境耦合的UHLMANN载体,包括Su-Schrieffer-Heeger(SSH)模型,Kitaev链,Bernevig-Hughes-Zhang(BHZ)模型。如果初始状态是拓扑,并且只有某些类型的lindblad跳跃操作员,则显示UHLMANN阶段在所有示例中都保持量化。因此,在有限温度下拓扑保护量子动力学中的环境影响,尽管仅适用于一类限制的系统环境耦合。

The Uhlmann phase, which reflects the holonomy as the purified state of a density matrix traverses a loop in the parameter space, has been used to characterize topological properties of several systems at finite temperatures. We test the Uhlmann holonomy against various system-environment couplings in quantum dynamics described by the Lindblad equations of three topological systems, including the Su-Schrieffer-Heeger (SSH) model, Kitaev chain, and Bernevig-Hughes-Zhang (BHZ) model. The Uhlmann phase is shown to remain quantized in all the examples if the initial state is topological and only certain types of the Lindblad jump operators are present. Topological protection at finite temperatures against environmental effects in quantum dynamics is therefore demonstrated albeit only for a restricted class of system-environment couplings.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源