论文标题

HULC:3D人类运动捕获,带有姿势歧管抽样和密集的接触指导

HULC: 3D Human Motion Capture with Pose Manifold Sampling and Dense Contact Guidance

论文作者

Shimada, Soshi, Golyanik, Vladislav, Li, Zhi, Pérez, Patrick, Xu, Weipeng, Theobalt, Christian

论文摘要

无标记的单眼3D人类运动捕获(MOCAP)与场景相互作用是一个充满挑战的研究主题,与扩展现实,机器人技术和虚拟头像产生相关。由于单眼环境的固有深度歧义,使用现有方法捕获的3D运动通常包含严重的人工制品,例如不正确的身体场景互穿,抖动和身体浮动。为了解决这些问题,我们提出了Hulc,这是一种新的3D人类MOCAP方法,它知道场景几何形状。 HULC估计3D姿势和密集的身体环境表面接触,以改善3D定位以及受试者的绝对尺度。此外,我们基于新的姿势歧管采样来引入3D姿势轨迹优化,该采样解决了错误的身体环境互穿。尽管所提出的方法与现有的场景单程MOCAP算法相比,结构化输入较少,但它产生的物理上可见的姿势更加可行:HULC显着,一致地均优于各种实验和不同指标中现有方法。项目页面:https://vcai.mpi-inf.mpg.de/projects/hulc/。

Marker-less monocular 3D human motion capture (MoCap) with scene interactions is a challenging research topic relevant for extended reality, robotics and virtual avatar generation. Due to the inherent depth ambiguity of monocular settings, 3D motions captured with existing methods often contain severe artefacts such as incorrect body-scene inter-penetrations, jitter and body floating. To tackle these issues, we propose HULC, a new approach for 3D human MoCap which is aware of the scene geometry. HULC estimates 3D poses and dense body-environment surface contacts for improved 3D localisations, as well as the absolute scale of the subject. Furthermore, we introduce a 3D pose trajectory optimisation based on a novel pose manifold sampling that resolves erroneous body-environment inter-penetrations. Although the proposed method requires less structured inputs compared to existing scene-aware monocular MoCap algorithms, it produces more physically-plausible poses: HULC significantly and consistently outperforms the existing approaches in various experiments and on different metrics. Project page: https://vcai.mpi-inf.mpg.de/projects/HULC/.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源