论文标题

朝向显式离散全息图:双曲线砖的旋转链条

Towards Explicit Discrete Holography: Aperiodic Spin Chains from Hyperbolic Tilings

论文作者

Basteiro, Pablo, Di Giulio, Giuseppe, Erdmenger, Johanna, Karl, Jonathan, Meyer, René, Xian, Zhuo-Yu

论文摘要

我们提出了一个离散全息图的新示例,该示例为建立离散空间的ADS/CFT双重性提供了新的步骤。一类边界汉密尔顿人是从双曲线庞加利磁盘的常规瓷砖的自然方式获得的,该通胀规则允许使用瓷砖同心层构造瓷砖。该类别中的模型是Aperiodic旋转链,其耦合序列是从批量通货膨胀规则中获得的。我们明确选择具有自旋1/2度自由度的Aperiodic XXZ自旋链为例。通过使用强大疾病的重新规范化组技术来研究该模型的性能,该技术为该自旋链的基态提供了张量的网络结构。这可以被视为离散的批量重建。此外,我们以两种不同的方式计算此设置中的纠缠熵:Ryu-takayanagi公式的离散化以及边界上的大型汉密尔顿的标准计算的概括。对于两种方法,都确定了子系统大小中纠缠熵的对数增长。系数,即有效的中心电荷,取决于两种情况下的大量离散参数,尽管以不同的方式。

We propose a new example of discrete holography that provides a new step towards establishing the AdS/CFT duality for discrete spaces. A class of boundary Hamiltonians is obtained in a natural way from regular tilings of the hyperbolic Poincaré disk, via an inflation rule that allows to construct the tiling using concentric layers of tiles. The models in this class are aperiodic spin chains, whose sequences of couplings are obtained from the bulk inflation rule. We explicitly choose the aperiodic XXZ spin chain with spin 1/2 degrees of freedom as an example. The properties of this model are studied by using strong disorder renormalization group techniques, which provide a tensor network construction for the ground state of this spin chain. This can be regarded as discrete bulk reconstruction. Moreover we compute the entanglement entropy in this setup in two different ways: a discretization of the Ryu-Takayanagi formula and a generalization of the standard computation for the boundary aperiodic Hamiltonian. For both approaches, a logarithmic growth of the entanglement entropy in the subsystem size is identified. The coefficients, i.e. the effective central charges, depend on the bulk discretization parameters in both cases, albeit in a different way.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源