论文标题
Sudakov的肩部重新点燃,重型喷气质量
Sudakov Shoulder Resummation for Thrust and Heavy Jet Mass
论文作者
论文摘要
当可观察到的允许范围在扰动理论中逐阶增长时,其扰动扩展可能具有不连续性(如$ c $参数中)或其衍生物中的不连续性(如推力或重型喷气质量),称为sudakov肩膀。我们使用扰动理论和有效的田间理论探索这些对数的起源。我们表明,对于推力和重型喷射质量,对数是由带有狭窄喷气机的运动学配置引起的,并推断了近距离领导的对数系列。 $ r \ r \α_s^n \ ln^{2n} r $带有$ r = \ frac {1} {1} {3} -pρ$的左肩s块($ρ$)的对数($ρ$)特别危险,因为它们在传统上用来提取$α__s$的区域中的固定订购理论无效。尽管分解公式表明没有非全球对数,但我们发现与尖端异常尺寸相关的重新召集的分布中的Landau-pole类似于奇异性,并且功率校正非常重要。
When the allowed range of an observable grows order-by-order in perturbation theory, its perturbative expansion can have discontinuities (as in the $C$ parameter) or discontinuities in its derivatives (as in thrust or heavy jet mass) called Sudakov shoulders. We explore the origin of these logarithms using both perturbation theory and effective field theory. We show that for thrust and heavy jet mass, the logarithms arise from kinematic configurations with narrow jets and deduce the next-to-leading logarithmic series. The left-shoulder logarithms in heavy jet mass ($ρ$) of the form $r\ α_s^n \ln^{2n}r $ with $r=\frac{1}{3}-ρ$ are particularly dangerous, because they invalidate fixed order perturbation theory in regions traditionally used to extract $α_s$. Although the factorization formula shows there are no non-global logarithms, we find Landau-pole like singularities in the resummed distribution associated with the cusp anomalous dimension, and that power corrections are exceptionally important.