论文标题
计算时空
Computing spacetime
论文作者
论文摘要
受到计算的普遍性的启发,我们主张时空复杂性的原理,由于时空优化其自身量子动力学的计算成本,因此引起了重力。该原理是在反DE保姆/保形场理论对应关系的背景下明确实现的,在这种情况下,通过欧几里得路径积分,自然而然地理解了复杂性,而爱因斯坦的方程式从量子复杂性的定律中得出。我们使用Lorentzian线程可视化时空的复杂性,从概念上讲,这些线程表示在张量化网络中设置量子状态所需的操作。因此,时空本身通过优化的计算演变。
Inspired by the universality of computation, we advocate for a principle of spacetime complexity, where gravity arises as a consequence of spacetime optimizing the computational cost of its own quantum dynamics. This principle is explicitly realized in the context of the Anti-de Sitter/Conformal Field Theory correspondence, where complexity is naturally understood in terms of state preparation via Euclidean path integrals, and Einstein's equations emerge from the laws of quantum complexity. We visualize spacetime complexity using Lorentzian threads which, conceptually, represent the operations needed to prepare a quantum state in a tensor network discretizing spacetime. Thus, spacetime itself evolves via optimized computation.