论文标题

涉及分数$ g $ -laplacian的问题,缺乏紧凑

Problems involving the fractional $g$-Laplacian with Lack of Compactness

论文作者

Bahrouni, Sabri, Ounaies, Hichem, Elfalah, Olfa

论文摘要

在本文中,我们证明了分数orlicz-sobolev space的子空间的紧凑嵌入$ w^{s,g} \ left(\ mathbb {r}^{n} \ right)$由径向函数组成的$,我们的目标嵌入空间是Orlicz型的。另外,我们证明了$ w^{s,g} \ left(\ mathbb {r}^{n} \ right)$的狮子和LIEB类型结果,该$以一种特定的方式可以获得弱极限为非平底的序列。作为一个应用程序,我们研究了整个空间中准线性椭圆问题的解决方案$ \ mathbb {r}^n $,涉及分数$ g- $ laplacian操作员,其中共轭函数$ \ widetilde {g widetilde {g} $ g $ of $ g $不满足$δ_2$ - $ condition。

In this paper we prove compact embedding of a subspace of the fractional Orlicz-Sobolev space $W^{s, G}\left(\mathbb{R}^{N}\right)$ consisting of radial functions, our target embedding spaces are of Orlicz type. Also, we prove a Lions and Lieb type results for $W^{s,G}\left(\mathbb{R}^{N}\right)$ that works together in a particular way to get a sequence whose the weak limit is nontrivial. As an application, we study the existence of solutions to Quasilinear elliptic problems in the whole space $\mathbb{R}^N$ involving the fractional $g-$Laplacian operator, where the conjugated function $\widetilde{G}$ of $G$ doesn't satisfy the $Δ_2$-condition.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源