论文标题
BP <n>(CO)同源性二元性
Duality in BP<n> (co)homology
论文作者
论文摘要
令e = bp <n>表示约翰逊 - 威尔逊光谱,位于p。可以证明,如果e _*(x)是局部有限的,则有一个正确的e _* - 模块e^*(x)=(e _*(sigma^{d+n+1} x)^v,其中d = sum | v_i | v_i | M^V = HOM(M,Q/Z)是双重二元。这一结果是由作者和W.S. Wilson的工作激励的,涉及Eilenberg-Maclane Space K(Z/2,2)的2个本地KU - 同源学和血液学。
Let E=BP<n> denote the Johnson-Wilson spectrum, localized at p. It is proved that if E_*(X) is locally finite, then there is an isomorphism of right E_*-modules E^*(X) = (E_*(Sigma^{D+n+1}X))^V, where D=Sum |v_i| and M^V=Hom(M,Q/Z) is the Pontryagin dual. This result was motivated by work of the author and W.S.Wilson regarding the 2-local ku-homology and -cohomology of the Eilenberg-MacLane space K(Z/2,2).