论文标题

高阶平滑单调变化不平等的最佳方法

Optimal Methods for Higher-Order Smooth Monotone Variational Inequalities

论文作者

Adil, Deeksha, Bullins, Brian, Jambulapati, Arun, Sachdeva, Sushant

论文摘要

在这项工作中,我们提出了用于解决$ p^{th} $的变异不平等问题(VI)问题的新的简单和最佳算法 - 订购平滑,单调运算符 - 这个问题概括了凸出优化和鞍点问题。最近的作品(Bulins and Lai(2020),Lin and Jordan(2021),Jiang and Mokhtari(2022))提出了实现$ \ tilde {o}(ε^{ - 2/(p+1)$ $ p \ geq 1 $,nemirovski和2004(nemirovski)的$ \ tilde {o}(ε^{ - 2/(p+1))$ (2012)),$ p = 1,2 $。但是,对这些方法的缺点是它们对线路搜索方案的依赖。我们提供了第一个$ p^{\ textrm {th}} $ - 达到$ O(ε^{ - 2/(p+1)})的订单方法。$我们的方法不依赖行搜索例程,从而通过对数因子来提高先前的速率。在Nemirovski(2004)的Mirror Prox方法的基础上,我们的算法即使在受约束的非欧几里得环境中也起作用。此外,我们通过构建匹配的下限来证明算法的最佳性。这些是对于$ p> 1 $的凸优化的平滑MVIS的第一个下限。这建立了求解光滑的MVI和平滑凸优化之间的分离,并解决了求解$ p^{\ textrm {th}} $ - 订购平滑MVIS的甲骨文复杂性。

In this work, we present new simple and optimal algorithms for solving the variational inequality (VI) problem for $p^{th}$-order smooth, monotone operators -- a problem that generalizes convex optimization and saddle-point problems. Recent works (Bullins and Lai (2020), Lin and Jordan (2021), Jiang and Mokhtari (2022)) present methods that achieve a rate of $\tilde{O}(ε^{-2/(p+1)})$ for $p\geq 1$, extending results by (Nemirovski (2004)) and (Monteiro and Svaiter (2012)) for $p=1,2$. A drawback to these approaches, however, is their reliance on a line search scheme. We provide the first $p^{\textrm{th}}$-order method that achieves a rate of $O(ε^{-2/(p+1)}).$ Our method does not rely on a line search routine, thereby improving upon previous rates by a logarithmic factor. Building on the Mirror Prox method of Nemirovski (2004), our algorithm works even in the constrained, non-Euclidean setting. Furthermore, we prove the optimality of our algorithm by constructing matching lower bounds. These are the first lower bounds for smooth MVIs beyond convex optimization for $p > 1$. This establishes a separation between solving smooth MVIs and smooth convex optimization, and settles the oracle complexity of solving $p^{\textrm{th}}$-order smooth MVIs.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源