论文标题
羊乳酪:开放域对话中的几个样本任务转移的基准
FETA: A Benchmark for Few-Sample Task Transfer in Open-Domain Dialogue
论文作者
论文摘要
任务转移(相关任务中包含的传递知识)具有减少微调语言模型所需的标记数据数量的承诺。对话理解涵盖了许多不同的任务,但是在会话AI中尚未对任务转移进行彻底研究。这项工作通过引入FETA来探讨对话任务转移:开放域对话中几个样本任务转移的基准。羊乳酪包含两组基本的对话集,其中有10个和7个任务,从而可以研究数据内任务转移;任务转移无域适应。我们利用三种流行的语言模型和三种学习算法来分析132个源目标任务对之间的可传递性,并为将来的工作创建基线。我们在单源和多源设置中运行实验,并报告有价值的发现,例如,大多数性能趋势都是模型特定的,跨度提取和多项选择任务从任务传输中受益最大。除了任务转移外,FETA还可以成为对未来研究预训练数据集和模型架构的效率和普遍性的宝贵资源,以及诸如持续和多任务学习之类的学习设置。
Task transfer, transferring knowledge contained in related tasks, holds the promise of reducing the quantity of labeled data required to fine-tune language models. Dialogue understanding encompasses many diverse tasks, yet task transfer has not been thoroughly studied in conversational AI. This work explores conversational task transfer by introducing FETA: a benchmark for few-sample task transfer in open-domain dialogue. FETA contains two underlying sets of conversations upon which there are 10 and 7 tasks annotated, enabling the study of intra-dataset task transfer; task transfer without domain adaptation. We utilize three popular language models and three learning algorithms to analyze the transferability between 132 source-target task pairs and create a baseline for future work. We run experiments in the single- and multi-source settings and report valuable findings, e.g., most performance trends are model-specific, and span extraction and multiple-choice tasks benefit the most from task transfer. In addition to task transfer, FETA can be a valuable resource for future research into the efficiency and generalizability of pre-training datasets and model architectures, as well as for learning settings such as continual and multitask learning.