论文标题
关于理想束带的Castelnuovo-Mumford规律性的评论
A remark on the Castelnuovo-Mumford regularity of powers of ideal sheaves
论文作者
论文摘要
我们表明,Castelnuovo-Mumford的规律性的结合,具有光滑的投影型复杂品种的理想捆包的任何功能,$ x \ subseteq \ mathbb {p}^r $恰到好处,只要$ x $是$ \ m m iathbbbbb {p}^r $ \ mathbbbb {p}^r $ x $ cut of cut of cut of cut of cut of cut of cut of cut of cut of cut of cut Out cut Out cut Out cut Out cut Outsections。这概括了Bertram-in-lazarsfeld的结果。
We show that a bound of the Castelnuovo-Mumford regularity of any power of the ideal sheaf of a smooth projective complex variety $X\subseteq\mathbb{P}^r$ is sharp exactly for complete intersections, provided the variety $X$ is cut out scheme-theoretically by several hypersurfaces in $\mathbb{P}^r$. This generalizes a result of Bertram-Ein-Lazarsfeld.