论文标题
名词2verb:单词类转换的概率框架语义
Noun2Verb: Probabilistic frame semantics for word class conversion
论文作者
论文摘要
人类可以在不同的语法类别中灵活地扩展单词用法,这一现象称为单词类转换。名词到驱动器的转换或Denminal动词(例如,谷歌廉价飞行)是单词类转换的最普遍形式之一。但是,现有的自然语言处理系统在解释和产生新颖的民主动词使用方面却不稳定。先前的工作表明,如果听众可以根据与说话者的共同知识计算预期的含义,则可以理解新颖的书面动词使用情况。在这里,我们探索了在框架语义中依靠的该提案的计算形式主义。我们提出了一个正式的框架Noun2verb,该框架通过建模说话者和听众的语义帧中的共同知识来模拟新颖的动词使用的生产和理解。我们评估了一组概率模型集,这些模型学会通过释义来解释和生成新颖的Denminal动词使用情况。我们表明,讲话者和听众合作地学习语义框架元素的联合分布更好地解释了与最先进的语言模型更好地解释的模型,该模型对1)成人和儿童演讲中的当代英语的数据进行了评估。我们的工作理由在概率的框架语义上进行单词类转换,并在词汇创造力中弥合了自然语言处理系统与人类之间的差距。
Humans can flexibly extend word usages across different grammatical classes, a phenomenon known as word class conversion. Noun-to-verb conversion, or denominal verb (e.g., to Google a cheap flight), is one of the most prevalent forms of word class conversion. However, existing natural language processing systems are impoverished in interpreting and generating novel denominal verb usages. Previous work has suggested that novel denominal verb usages are comprehensible if the listener can compute the intended meaning based on shared knowledge with the speaker. Here we explore a computational formalism for this proposal couched in frame semantics. We present a formal framework, Noun2Verb, that simulates the production and comprehension of novel denominal verb usages by modeling shared knowledge of speaker and listener in semantic frames. We evaluate an incremental set of probabilistic models that learn to interpret and generate novel denominal verb usages via paraphrasing. We show that a model where the speaker and listener cooperatively learn the joint distribution over semantic frame elements better explains the empirical denominal verb usages than state-of-the-art language models, evaluated against data from 1) contemporary English in both adult and child speech, 2) contemporary Mandarin Chinese, and 3) the historical development of English. Our work grounds word class conversion in probabilistic frame semantics and bridges the gap between natural language processing systems and humans in lexical creativity.