论文标题
Lantern-RD:启用深度学习以减轻侵入性斑点灯笼
LANTERN-RD: Enabling Deep Learning for Mitigation of the Invasive Spotted Lanternfly
论文作者
论文摘要
斑点的灯笼蝇(SLF)是一种侵入性的plan,它威胁着美国东北部和日本等地区的当地生物多样性和农业经济。当研究人员争先恐后地研究昆虫时,计算机视觉任务(例如检测,姿势估计和准确的识别)具有很大的潜力,可以在包含SLF的情况下具有重要的下游意义。但是,目前尚无用于培训此类AI模型的公开可用数据集。为了启用计算机视觉应用程序并激励进步来挑战入侵SLF问题,我们提出了Lantern-RD,这是斑点灯笼蝇及其外观相似的第一个策划的图像数据集,其中包含具有不同照明条件的图像,各种背景和各种姿势的主题。基于VGG16的基线CNN验证了该数据集刺激新鲜的计算机视觉应用程序以加速侵入性SLF研究的潜力。此外,我们在简单的移动分类应用程序中实施了训练有素的模型,以直接授权负责任的公共缓解工作。这项工作的总体任务是引入新颖的SLF图像数据集并发布一个分类框架,该框架能够实现计算机视觉应用程序,促进围绕入侵SLF的研究并协助将其农业和经济损害最小化。
The Spotted Lanternfly (SLF) is an invasive planthopper that threatens the local biodiversity and agricultural economy of regions such as the Northeastern United States and Japan. As researchers scramble to study the insect, there is a great potential for computer vision tasks such as detection, pose estimation, and accurate identification to have important downstream implications in containing the SLF. However, there is currently no publicly available dataset for training such AI models. To enable computer vision applications and motivate advancements to challenge the invasive SLF problem, we propose LANTERN-RD, the first curated image dataset of the spotted lanternfly and its look-alikes, featuring images with varied lighting conditions, diverse backgrounds, and subjects in assorted poses. A VGG16-based baseline CNN validates the potential of this dataset for stimulating fresh computer vision applications to accelerate invasive SLF research. Additionally, we implement the trained model in a simple mobile classification application in order to directly empower responsible public mitigation efforts. The overarching mission of this work is to introduce a novel SLF image dataset and release a classification framework that enables computer vision applications, boosting studies surrounding the invasive SLF and assisting in minimizing its agricultural and economic damage.