论文标题

改善了高管独立统治数的上限

Improved Upper Bound on Independent Domination Number for Hypercubes

论文作者

Chowdhury, Debabani, Das, Debesh K., Bhattacharya, Bhargab B.

论文摘要

我们重新审查了确定超级管中独立支配数的问题,而在一般维度中,已知的上限仍然不紧密。我们在这里提出了一种建设性的方法,可以为$ n $ dimensional HyperCube $ q_n $构建独立的统治套件$ s_n $,其中$ n = 2p+1 $,$ p $是正整数$ \ ge 1 $,提供了一个独立的统治套件$ s_p $ $ p $ p $ p $ dimemensional hypercube $ q_p $ q_p $,已知。该过程还计算所有$ n = 2^k-1 $,$ k> 1 $的最小独立统治集。最后,我们确定独立支配数$α_n\ leq 3 \ times 2^{n-k-2} $对于$ 7 \ times 2^{k-2} {k-2} -1 \ leq n <2^{k+1} -1 $,$ k> 1 $。与较早的工作相比,这是该范围的改进的上限。

We revisit the problem of determining the independent domination number in hypercubes for which the known upper bound is still not tight for general dimensions. We present here a constructive method to build an independent dominating set $S_n$ for the $n$-dimensional hypercube $Q_n$, where $n=2p+1$, $p$ being a positive integer $\ge 1$, provided an independent dominating set $S_p$ for the $p$-dimensional hypercube $Q_p$, is known. The procedure also computes the minimum independent dominating set for all $n=2^k-1$, $k>1$. Finally, we establish that the independent domination number $α_n\leq 3 \times 2^{n-k-2}$ for $7\times 2^{k-2}-1\leq n<2^{k+1}-1$, $k>1$. This is an improved upper bound for this range as compared to earlier work.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源