论文标题

酸:马尔可夫调制和自我激发计数过程的低维度表征

ACID: A Low Dimensional Characterization of Markov-Modulated and Self-Exciting Counting Processes

论文作者

Sinzger-D'Angelo, Mark, Koeppl, Heinz

论文摘要

计数过程的条件强度(CI)$ y_t $基于最小知识$ \ Mathcal {f} _t^y $,即单独观察$ y_t $。显着地,信号及其泊松通道输出的相互信息速率是CI和对输入充分了解的强度之间的差异功能。尽管马尔可夫调制的泊松过程的CI根据Snyder的过滤器而演变,但自我激发过程,例如Hawkes Processes,通过$ Y_T $的历史记录指定CI。 CI作为一个独立的随机过程的出现促使我们将其统计合奏置于焦点。我们研究了渐近条件强度分布(酸),并强调其丰富的信息含量。我们假设从足够的统计量来确定CI的情况下,该统计量是马尔可夫过程。我们提出了一种无模拟方法来计算足够统计量的尺寸较低时计算酸的方法。通过引入向后复发时间参数化,可以使该方法成为可能,该参数具有将所有概率流入在主方程的边界条件下的优势。案例研究说明了三个主要示例的酸的用法:1)带有二进制马尔可夫输入的泊松通道(作为马尔可夫修饰的泊松过程的一个例子),2)2)具有指数核的标准霍克斯过程(作为自我引起的计数过程的一个示例)(作为一个自我引起的计数过程)和3)gamma滤波器(3)示例(示例示例)the Markov poissovs poisson poisson poisson poisson poisson cooson cosovson cosovmodson。

The conditional intensity (CI) of a counting process $Y_t$ is based on the minimal knowledge $\mathcal{F}_t^Y$, i.e., on the observation of $Y_t$ alone. Prominently, the mutual information rate of a signal and its Poisson channel output is a difference functional between the CI and the intensity that has full knowledge about the input. While the CI of Markov-modulated Poisson processes evolves according to Snyder's filter, self-exciting processes, e.g., Hawkes processes, specify the CI via the history of $Y_t$. The emergence of the CI as a self-contained stochastic process prompts us to bring its statistical ensemble into focus. We investigate the asymptotic conditional intensity distribution (ACID) and emphasize its rich information content. We assume the case in which the CI is determined from a sufficient statistic that progresses as a Markov process. We present a simulation-free method to compute the ACID when the dimension of the sufficient statistic is low. The method is made possible by introducing a backward recurrence time parametrization, which has the advantage to align all probability inflow in a boundary condition for the master equation. Case studies illustrate the usage of ACID for three primary examples: 1) the Poisson channels with binary Markovian input (as an example of a Markov-modulated Poisson process), 2) the standard Hawkes process with exponential kernel (as an example of a self-exciting counting process) and 3) the Gamma filter (as an example of an approximate filter to a Markov-modulated Poisson process).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源