论文标题
LB-OPAR:合作无人机网络的负载平衡优化的预测和自适应路由
LB-OPAR: Load Balanced Optimized Predictive and Adaptive Routing for Cooperative UAV Networks
论文作者
论文摘要
合作临时无人机网络已转变为建立通信基础架构不可行的情况的主要解决方案。灾难和情报,监视和侦察(ISR)之后的搜索是两个示例,无人机节点需要将收集到的数据合作地将其收集到的数据发送到中央决策者单元。最近提出的基于SDN的解决方案在管理此类网络的各个方面方面表现出令人难以置信的性能。 las,高度动态无人机网络的路由问题尚未得到充分解决。需要一种与SDN设计兼容的最佳,可靠和自适应路由算法,并且需要这种网络的高度动态性质来改善网络性能。本文提出了负载均衡的优化预测和自适应路由(LB-OPAR),这是一种基于SDN的合作无人机网络的路由解决方案。 LB-OPAR是我们最近发布的路由算法(OPAR)的扩展,该算法(OPAR)平衡网络负载并优化网络性能,以吞吐量,成功率和流量完成时间(FCT)来优化。我们通过分析地对高度动态的无人机网络中的路由问题进行了分析,并提出了一种轻巧的算法解决方案,以找到使用$ O(| e |^2)$时复杂性找到最佳解决方案,而$ | e | $是网络链接的总数。我们使用NS-3网络模拟器详尽地评估了所提出的算法的性能。结果表明,LB-OPAR的表现优于基准算法的FCT $ 20 \%$,平均流量成功率$ 30 \%$,最高$ 400 \%$ $ $ $。
Cooperative ad-hoc UAV networks have been turning into the primary solution set for situations where establishing a communication infrastructure is not feasible. Search-and-rescue after a disaster and intelligence, surveillance, and reconnaissance (ISR) are two examples where the UAV nodes need to send their collected data cooperatively into a central decision maker unit. Recently proposed SDN-based solutions show incredible performance in managing different aspects of such networks. Alas, the routing problem for the highly dynamic UAV networks has not been addressed adequately. An optimal, reliable, and adaptive routing algorithm compatible with the SDN design and highly dynamic nature of such networks is required to improve the network performance. This paper proposes a load-balanced optimized predictive and adaptive routing (LB-OPAR), an SDN-based routing solution for cooperative UAV networks. LB-OPAR is the extension of our recently published routing algorithm (OPAR) that balances the network load and optimizes the network performance in terms of throughput, success rate, and flow completion time (FCT). We analytically model the routing problem in highly dynamic UAV network and propose a lightweight algorithmic solution to find the optimal solution with $O(|E|^2)$ time complexity where $|E|$ is the total number of network links. We exhaustively evaluate the proposed algorithm's performance using ns-3 network simulator. Results show that LB-OPAR outperforms the benchmark algorithms by $20\%$ in FCT, by $30\%$ in flow success rate on average, and up to $400\%$ in throughput.