论文标题
Zagier-Hoffman的猜想是积极的特征
Zagier-Hoffman's conjectures in positive characteristic
论文作者
论文摘要
Thakur和Harada在阳性特征中引入了倍数Zeta值和交替的多个Zeta值,作为Euler和Euler总和的经典多个Zeta值的类似物。在本文中,我们确定了交替的多个Zeta值之间的所有线性关系,并解决这些理论的主要目标。结果,我们完全建立了由托德(Todd)和塔库尔(Thakur)提出的积极特征的Zagier-Hoffman的猜想,这些特征预测了固定重量的Thakur多个Zeta值的范围的尺寸和明确的基础。
Multiples zeta values and alternating multiple zeta values in positive characteristic were introduced by Thakur and Harada as analogues of classical multiple zeta values of Euler and Euler sums. In this paper we determine all linear relations among alternating multiple zeta values and settle the main goals of these theories. As a consequence we completely establish Zagier-Hoffman's conjectures in positive characteristic formulated by Todd and Thakur which predict the dimension and an explicit basis of the span of multiple zeta values of Thakur of fixed weight.