论文标题

皮质微电路的计算框架近似符号随机反向传播

A Computational Framework of Cortical Microcircuits Approximates Sign-concordant Random Backpropagation

论文作者

Yang, Yukun, Li, Peng

论文摘要

最近的几项研究试图解决众所周知的逆转(BP)方法的生物学不可能。尽管有希望的方法,例如反馈对准,直接反馈对准以及它们的变体,例如标志性反馈对准攻击BP的体重运输问题,但由于一系列未解决的问题,它们的有效性仍然存在争议。在这项工作中,我们回答了一个问题,即是否仅基于神经科学中观察到的机制才能实现随机反向传播。我们提出了一个假设的框架,该框架包括新的微电路架构及其支持的HEBBIAN学习规则。提出的微电路体系结构包括三种类型的单元和两种突触连接性,通过本地反馈连接来计算错误信号,并支持具有全球定义的尖峰错误函数的多层尖峰神经网络的训练。我们采用在本地隔间运行的HEBBIAN规则来更新突触权重,并以生物学上合理的方式实现监督学习。最后,我们从优化的角度来解释提出的框架,并显示其等同于标志反馈对准。所提出的框架在包括MNIST和CIFAR10在内的几个数据集上进行了测试,证明了有希望的BP稳定精度。

Several recent studies attempt to address the biological implausibility of the well-known backpropagation (BP) method. While promising methods such as feedback alignment, direct feedback alignment, and their variants like sign-concordant feedback alignment tackle BP's weight transport problem, their validity remains controversial owing to a set of other unsolved issues. In this work, we answer the question of whether it is possible to realize random backpropagation solely based on mechanisms observed in neuroscience. We propose a hypothetical framework consisting of a new microcircuit architecture and its supporting Hebbian learning rules. Comprising three types of cells and two types of synaptic connectivity, the proposed microcircuit architecture computes and propagates error signals through local feedback connections and supports the training of multi-layered spiking neural networks with a globally defined spiking error function. We employ the Hebbian rule operating in local compartments to update synaptic weights and achieve supervised learning in a biologically plausible manner. Finally, we interpret the proposed framework from an optimization point of view and show its equivalence to sign-concordant feedback alignment. The proposed framework is benchmarked on several datasets including MNIST and CIFAR10, demonstrating promising BP-comparable accuracy.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源