论文标题

弯曲空间中的有限通货膨胀

Finite inflation in curved space

论文作者

Hergt, Lukas T., Agocs, Fruzsina J., Handley, Will J., Hobson, Michael P., Lasenby, Anthony N.

论文摘要

我们研究了非零空间曲率对宇宙微波背景(CMB)各向异性测量的影响,从Planck 2018 Legacy释放以及2015年观察季节的BITEP2和KECK阵列的季节。即使是当今的非零曲率的一小部分也将显着限制通货膨胀期间比例因子的E倍数的总数,在较高的可能性更大的可能性之前,以动力学支配或快速滚动阶段渲染恰到好处的通货膨胀情况。有限的通胀导致振荡和针对原始功率频谱中的大尺度的截止,曲率将它们推入CMB可观察的窗口。使用嵌套采样,我们考虑了重新加热和视野考虑的约束,进行了贝叶斯参数估计和模型比较。我们确认CMB数据对贝叶斯赔率超过$ 100:1 $的封闭宇宙的偏好,并在曲率密度参数$ω__{k,0} = -0.051 \ pm0.017 $的后曲率密度参数上,用于LCDM和$ω_{k,0} = -0.031 = -031的曲率扩展。各种通货膨胀模型的模型比较给出了与Starobinsky模型相似的扁平宇宙,其表现优于其他大多数模型。

We investigate the effects of non-zero spatial curvature on cosmic inflation in the light of cosmic microwave background (CMB) anisotropy measurements from the Planck 2018 legacy release and from the 2015 observing season of BICEP2 and the Keck Array. Even a small percentage of non-zero curvature today would significantly limit the total number of e-folds of the scale factor during inflation, rendering just-enough inflation scenarios with a kinetically dominated or fast-roll stage prior to slow-roll inflation more likely. Finite inflation leads to oscillations and a cutoff towards large scales in the primordial power spectrum and curvature pushes them into the CMB observable window. Using nested sampling, we carry out Bayesian parameter estimations and model comparisons taking into account constraints from reheating and horizon considerations. We confirm the preference of CMB data for closed universes with Bayesian odds of over $100:1$ and with a posterior on the curvature density parameter of $Ω_{K,0}=-0.051\pm0.017$ for a curvature extension of LCDM and $Ω_{K,0}=-0.031\pm0.014$ for Starobinsky inflation. Model comparisons of various inflation models give similar results as for flat universes with the Starobinsky model outperforming most other models.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源