论文标题

众包假设的产生及其验证:关于改善睡眠质量的案例研究

Crowdsourced Hypothesis Generation and their Verification: A Case Study on Sleep Quality Improvement

论文作者

Wakamiya, Shoko, Mera, Toshiki, Aramaki, Eiji, Matsubara, Masaki, Morishima, Atsuyuki

论文摘要

探索重要的研究问题通常需要进行临床研究;但是,这种方法有时是时间和金钱。另一种极端方法是从人群中收集和汇总观点,这是从人群过去的经验和知识中得出的结果。为了探索一种利用僵化的临床方法和人群基于意见的方法的解决方案,我们设计了一个框架,该框架将众包作为研究过程的一部分,从而使人群工作人员好像是一名科学家进行“伪”前瞻性研究。这项研究评估了拟议框架在指定主题上产生假设的可行性,并通过雇用许多人群工人在现实世界中验证它们。该框架包括基于人群的工作流程的两个阶段。在第1阶段 - 假设生成和排名阶段 - 我们的系统要求工人两种类型的问题收集许多假设并将其排名。在第2阶段 - 假设验证阶段 - 系统要求工人通过在现实生活中实施其中一个来验证1阶段的顶级假设。通过实验,我们探讨了框架生成和评估导致睡眠良好因素的假设的潜力和局限性。我们对大量睡眠质量改善的结果表明了我们的框架的基本可行性,这表明基于人群的研究与专家在某个领域的知识兼容。

A clinical study is often necessary for exploring important research questions; however, this approach is sometimes time and money consuming. Another extreme approach, which is to collect and aggregate opinions from crowds, provides a result drawn from the crowds' past experiences and knowledge. To explore a solution that takes advantage of both the rigid clinical approach and the crowds' opinion-based approach, we design a framework that exploits crowdsourcing as a part of the research process, whereby crowd workers serve as if they were a scientist conducting a "pseudo" prospective study. This study evaluates the feasibility of the proposed framework to generate hypotheses on a specified topic and verify them in the real world by employing many crowd workers. The framework comprises two phases of crowd-based workflow. In Phase 1 - the hypothesis generation and ranking phase - our system asks workers two types of questions to collect a number of hypotheses and rank them. In Phase 2 - the hypothesis verification phase - the system asks workers to verify the top-ranked hypotheses from Phase 1 by implementing one of them in real life. Through experiments, we explore the potential and limitations of the framework to generate and evaluate hypotheses about the factors that result in a good night's sleep. Our results on significant sleep quality improvement show the basic feasibility of our framework, suggesting that crowd-based research is compatible with experts' knowledge in a certain domain.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源