论文标题

SQ-VAE:具有自降低随机量化的离散表示形式的变异贝叶斯

SQ-VAE: Variational Bayes on Discrete Representation with Self-annealed Stochastic Quantization

论文作者

Takida, Yuhta, Shibuya, Takashi, Liao, WeiHsiang, Lai, Chieh-Hsin, Ohmura, Junki, Uesaka, Toshimitsu, Murata, Naoki, Takahashi, Shusuke, Kumakura, Toshiyuki, Mitsufuji, Yuki

论文摘要

一个著名的矢量定量变分自动编码器(VQ-VAE)的问题是,学识渊博的离散表示形式仅使用代码书的全部容量的一小部分,也称为代码书崩溃。我们假设VQ-VAE的培训计划涉及一些精心设计的启发式方法,这是这个问题的基础。在本文中,我们提出了一种新的训练方案,该方案通过新颖的随机去量化和量化扩展了标准VAE,称为随机量化变异自动编码器(SQ-VAE)。在SQ-VAE中,我们观察到一种趋势,即在训练的初始阶段进行量化是随机的,但逐渐收敛于确定性量化,我们称之为自我宣布。我们的实验表明,SQ-VAE在不使用常见的启发式方法的情况下改善了CodeBook的利用率。此外,我们从经验上表明,在与视觉和语音有关的任务中,SQ-VAE优于VAE和VQ-VAE。

One noted issue of vector-quantized variational autoencoder (VQ-VAE) is that the learned discrete representation uses only a fraction of the full capacity of the codebook, also known as codebook collapse. We hypothesize that the training scheme of VQ-VAE, which involves some carefully designed heuristics, underlies this issue. In this paper, we propose a new training scheme that extends the standard VAE via novel stochastic dequantization and quantization, called stochastically quantized variational autoencoder (SQ-VAE). In SQ-VAE, we observe a trend that the quantization is stochastic at the initial stage of the training but gradually converges toward a deterministic quantization, which we call self-annealing. Our experiments show that SQ-VAE improves codebook utilization without using common heuristics. Furthermore, we empirically show that SQ-VAE is superior to VAE and VQ-VAE in vision- and speech-related tasks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源