论文标题
通过潜在的结构感知的顺序自动编码器概括为不断发展的域
Generalizing to Evolving Domains with Latent Structure-Aware Sequential Autoencoder
论文作者
论文摘要
域的概括旨在提高机器学习系统到分布(OOD)数据的概括能力。现有的域概括技术将启动固定和离散环境,以解决由OOD数据引起的概括问题。但是,非平稳环境中的许多实际任务(例如,自动驱动的汽车系统,传感器测量)涉及更复杂和不断发展的域漂移,这为域概括带来了新的挑战。在本文中,我们将上述设置作为不断发展的域概括问题。具体而言,我们建议引入一个概率框架,称为潜在的结构感知序列自动编码器(LSSAE),以通过探索深层神经网络的潜在空间中的潜在持续结构来解决发展域概括的问题,我们旨在在其中确定两个主要因素,即确定分配转移的分布转移,以识别分布转移的分布环境。合成和现实世界数据集的实验结果表明,LSSAE可以基于不断发展的域概括设置导致出色的性能。
Domain generalization aims to improve the generalization capability of machine learning systems to out-of-distribution (OOD) data. Existing domain generalization techniques embark upon stationary and discrete environments to tackle the generalization issue caused by OOD data. However, many real-world tasks in non-stationary environments (e.g. self-driven car system, sensor measures) involve more complex and continuously evolving domain drift, which raises new challenges for the problem of domain generalization. In this paper, we formulate the aforementioned setting as the problem of evolving domain generalization. Specifically, we propose to introduce a probabilistic framework called Latent Structure-aware Sequential Autoencoder (LSSAE) to tackle the problem of evolving domain generalization via exploring the underlying continuous structure in the latent space of deep neural networks, where we aim to identify two major factors namely covariate shift and concept shift accounting for distribution shift in non-stationary environments. Experimental results on both synthetic and real-world datasets show that LSSAE can lead to superior performances based on the evolving domain generalization setting.