论文标题
多项式公式作为基于还原硬度硬度的障碍
Polynomial formulations as a barrier for reduction-based hardness proofs
论文作者
论文摘要
强大的指数时间假设(SETH)断言,每个$ \ varepsilon> 0 $都存在$ k $,因此$ k $ -sat需要时间$(2- \ varepsilon)^n $。细粒度复杂性领域利用塞思(Seth)证明了在各个域和复杂性类别中的数十个问题(包括编辑距离,图形直径,击球设置,独立设置和正交向量)中的数十个问题。然而,文献中反复询问塞思·哈德(Seth-Hardness)结果是否可以证明其他基本问题,例如汉密尔顿路径,独立集,色数,最大$ k $ -sat和套装。 在本文中,我们表明,精细颗粒的减少意味着塞思的这些问题甚至$λ^n $ - 对于任何$λ> 1 $,都将暗示新电路下限:布尔值系列平行电路或多项式下限的超级线性下限,或者是算术电路的多项式下限(每个是四个不确定的问题)。 我们还将此障碍结果扩展到参数化问题类别。也就是说,对于每条$λ> 1 $,我们有条件地排除了细粒度的减少,这意味着基于$λ^k $的基于SETH的下限,用于通过解决方案尺寸$ K $参数的许多问题。 我们的主要技术工具是一个称为多项式配方的新概念。特别是,我们表明许多问题可以用相对简洁的低度多项式来表示,并且这种表示形式的任何问题均无法证明Seth-Hard(没有证明新电路下限)。
The Strong Exponential Time Hypothesis (SETH) asserts that for every $\varepsilon>0$ there exists $k$ such that $k$-SAT requires time $(2-\varepsilon)^n$. The field of fine-grained complexity has leveraged SETH to prove quite tight conditional lower bounds for dozens of problems in various domains and complexity classes, including Edit Distance, Graph Diameter, Hitting Set, Independent Set, and Orthogonal Vectors. Yet, it has been repeatedly asked in the literature whether SETH-hardness results can be proven for other fundamental problems such as Hamiltonian Path, Independent Set, Chromatic Number, MAX-$k$-SAT, and Set Cover. In this paper, we show that fine-grained reductions implying even $λ^n$-hardness of these problems from SETH for any $λ>1$, would imply new circuit lower bounds: super-linear lower bounds for Boolean series-parallel circuits or polynomial lower bounds for arithmetic circuits (each of which is a four-decade open question). We also extend this barrier result to the class of parameterized problems. Namely, for every $λ>1$ we conditionally rule out fine-grained reductions implying SETH-based lower bounds of $λ^k$ for a number of problems parameterized by the solution size $k$. Our main technical tool is a new concept called polynomial formulations. In particular, we show that many problems can be represented by relatively succinct low-degree polynomials, and that any problem with such a representation cannot be proven SETH-hard (without proving new circuit lower bounds).