论文标题

强大的RRT:不确定的非线性系统的概率完整的运动计划

Robust-RRT: Probabilistically-Complete Motion Planning for Uncertain Nonlinear Systems

论文作者

Wu, Albert, Lew, Thomas, Solovey, Kiril, Schmerling, Edward, Pavone, Marco

论文摘要

强大的运动计划需要计算一个在所有可能的不确定性实现下安全的全球运动计划,无论是在系统动力学,机器人的初始位置还是在外部干扰方面。当前的强大运动计划方法要么缺乏理论保证,要么对系统动态和不确定性分布做出限制性假设。在本文中,我们通过提出可靠的快速探索随机树(Robust-RRT)算法来解决这些局限性,该算法将正向可及性分析直接集成到基于采样的控制轨迹合成中。我们证明,对于具有有界不确定性的非线性Lipschitz连续动力系统,鲁棒RRT概率是完整的(PC)。换句话说,强大的RRT最终发现了一个强大的运动计划,该计划在所有可能的不确定性实现下都是可行的,假设存在这样的计划。我们的分析甚至适用于仅承认短摩龙可行计划的不稳定系统;这是因为我们明确考虑了沿控制轨迹的可及集合的时间演变。得益于我们分析中时间依赖性的明确考虑,PC适用于无法固化的系统。据我们所知,就其可以处理的不确定性和动态系统的类型而言,这是基于强大的采样运动计划的最通用的PC证明。考虑到可触及集合的精确计算对于某些动态系统而言可能在计算上很昂贵,因此我们将基于抽样的可及性分析纳入了鲁棒 - RRT,并证明了我们在非线性,不足和混合系统上的鲁棒计划器。

Robust motion planning entails computing a global motion plan that is safe under all possible uncertainty realizations, be it in the system dynamics, the robot's initial position, or with respect to external disturbances. Current approaches for robust motion planning either lack theoretical guarantees, or make restrictive assumptions on the system dynamics and uncertainty distributions. In this paper, we address these limitations by proposing the robust rapidly-exploring random-tree (Robust-RRT) algorithm, which integrates forward reachability analysis directly into sampling-based control trajectory synthesis. We prove that Robust-RRT is probabilistically complete (PC) for nonlinear Lipschitz continuous dynamical systems with bounded uncertainty. In other words, Robust-RRT eventually finds a robust motion plan that is feasible under all possible uncertainty realizations assuming such a plan exists. Our analysis applies even to unstable systems that admit only short-horizon feasible plans; this is because we explicitly consider the time evolution of reachable sets along control trajectories. Thanks to the explicit consideration of time dependency in our analysis, PC applies to unstabilizable systems. To the best of our knowledge, this is the most general PC proof for robust sampling-based motion planning, in terms of the types of uncertainties and dynamical systems it can handle. Considering that an exact computation of reachable sets can be computationally expensive for some dynamical systems, we incorporate sampling-based reachability analysis into Robust-RRT and demonstrate our robust planner on nonlinear, underactuated, and hybrid systems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源