论文标题

切换为验证器:通过分布式,设备验证进行可扩展的数据平面检查

Switch as a Verifier: Toward Scalable Data Plane Checking via Distributed, On-Device Verification

论文作者

Xiang, Qiao, Wen, Ridi, Huang, Chenyang, Wang, Yuxin, Le, Franck

论文摘要

数据平面验证(DPV)对于查找网络错误很重要。当前的DPV工具采用集中式体系结构,服务器收集所有设备的数据平面并验证它们。尽管为加速DPV而做出了巨大的努力,但这种集中式体系结构本质上是不可估量的。在本文中,为了应对DPV的可伸缩性挑战,我们规避了集中设计和设计珊瑚的可扩展性瓶颈,这是一个分布式的,设备的DPV框架。珊瑚的关键见解是,DPV可以在有向的无环图上转换为计数问题,该图可以自然地分解为在网络设备上执行的轻质任务,从而实现可扩展性。珊瑚由(1)声明要求规范语言组成,(2)采用新型数据结构DVNET将全局验证分解为设备计数任务的计划者,以及(3)分布式验证(DV)协议,该协议指定了如何有效地验证任务结果来协作验证要求的验证方式。我们实施了珊瑚的原型。对现实世界数据集(WAN/LAN/DC)进行的广泛实验表明,在各种网络和DPV场景下,珊瑚在爆发更新的情况下始终达到可扩展的DPV,即高达1250倍的速度,并且在越来越多的网络上,越来越多的网络,与depv dpv工具相比,高达80%的量化速度,多达202次。

Data plane verification (DPV) is important for finding network errors. Current DPV tools employ a centralized architecture, where a server collects the data planes of all devices and verifies them. Despite substantial efforts on accelerating DPV, this centralized architecture is inherently unscalable. In this paper, to tackle the scalability challenge of DPV, we circumvent the scalability bottleneck of centralized design and design Coral, a distributed, on-device DPV framework. The key insight of Coral is that DPV can be transformed into a counting problem on a directed acyclic graph, which can be naturally decomposed into lightweight tasks executed at network devices, enabling scalability. Coral consists of (1) a declarative requirement specification language, (2) a planner that employs a novel data structure DVNet to systematically decompose global verification into on-device counting tasks, and (3) a distributed verification (DV) protocol that specifies how on-device verifiers communicate task results efficiently to collaboratively verify the requirements. We implement a prototype of Coral. Extensive experiments with real-world datasets (WAN/LAN/DC) show that Coral consistently achieves scalable DPV under various networks and DPV scenarios, i.e., up to 1250 times speed up in the scenario of burst update, and up to 202 times speed up on 80% quantile of incremental verification, than state-of-the-art DPV tools, with little overhead on commodity network devices.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源