论文标题

关于地理分布的云数据中心管理的机器学习的调查

A Survey on Machine Learning for Geo-Distributed Cloud Data Center Management

论文作者

Hogade, Ninad, Pasricha, Sudeep

论文摘要

今天,云工作负载通常在分布式环境中进行管理,并在地理分布的数据中心进行处理。云服务提供商一直在全球分发数据中心,以降低运营成本,同时还通过使用智能工作量和资源管理策略来提高服务质量。软件工作负载和硬件资源的如此大规模且复杂的编排仍然是一个很难有效解决的问题。研究人员和从业人员一直试图通过提出各种云管理技术来解决这个问题。历史上,数学优化技术一直用于解决云管理问题。但是,这些技术很难扩展到地理分布的问题大小,并且在动态异质系统环境中的适用性有限,从而迫使云服务提供商探索基于智能的数据驱动和机器学习(ML)替代方案。近年来,使用ML方法的复杂,异质和不断变化的分布式云资源和工作负载的表征,预测,控制和优化近年来受到了很多关注。在本文中,我们回顾了云数据中心管理问题的最先进的ML技术。我们研究了当前研究中的挑战和问题,该研究集中在ML上进行云管理,并探索解决这些问题的策略。我们还讨论了最近文献中提出的ML技术的优势和缺点,并为未来的研究方向提出建议。

Cloud workloads today are typically managed in a distributed environment and processed across geographically distributed data centers. Cloud service providers have been distributing data centers globally to reduce operating costs while also improving quality of service by using intelligent workload and resource management strategies. Such large scale and complex orchestration of software workload and hardware resources remains a difficult problem to solve efficiently. Researchers and practitioners have been trying to address this problem by proposing a variety of cloud management techniques. Mathematical optimization techniques have historically been used to address cloud management issues. But these techniques are difficult to scale to geo-distributed problem sizes and have limited applicability in dynamic heterogeneous system environments, forcing cloud service providers to explore intelligent data-driven and Machine Learning (ML) based alternatives. The characterization, prediction, control, and optimization of complex, heterogeneous, and ever-changing distributed cloud resources and workloads employing ML methodologies have received much attention in recent years. In this article, we review the state-of-the-art ML techniques for the cloud data center management problem. We examine the challenges and the issues in current research focused on ML for cloud management and explore strategies for addressing these issues. We also discuss advantages and disadvantages of ML techniques presented in the recent literature and make recommendations for future research directions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源