论文标题

精确的机器学习生物分子模拟的量子力学场

Accurate Machine Learned Quantum-Mechanical Force Fields for Biomolecular Simulations

论文作者

Unke, Oliver T., Stöhr, Martin, Ganscha, Stefan, Unterthiner, Thomas, Maennel, Hartmut, Kashubin, Sergii, Ahlin, Daniel, Gastegger, Michael, Sandonas, Leonardo Medrano, Tkatchenko, Alexandre, Müller, Klaus-Robert

论文摘要

分子动力学(MD)模拟允许对化学和生物学过程的原子见解。准确的MD模拟需要计算要求的量子力学计算,实际上仅限于短时标准和很少的原子。对于较大的系统,使用了高效但可靠的经验力场。最近,机器学到的力场(MLFF)是执行MD模拟的替代方法,在高级速度上提供了与从头算法相似的准确性。到目前为止,由于构造模型的复杂性增加并获得了大分子的可靠参考数据,因此MLFF主要捕获小分子或周期性材料中的短距离相互作用,而长期远程的多体效应变得很重要。这项工作提出了一种通用方法,用于通过对“自下而上”和“自上而下”的分子片段进行训练,以构建大规模分子模拟(GEM)的准确MLFF,从而可以从中可以从中学习相关的物理化学相互作用。将宝石用于研究水溶液中丙氨酸基肽和46个残基蛋白crambin的动力学,从而使纳秒尺度的MD MD模拟> 25K原子基本上是从本质上开始质量的。我们的发现表明,肽和蛋白质中的结构基序比以前想象的要灵活,表明从头开始准确性模拟可能是必要的,以了解动态生物分子过程,例如蛋白(MIS)折叠,药物蛋白质结合或变构调节。

Molecular dynamics (MD) simulations allow atomistic insights into chemical and biological processes. Accurate MD simulations require computationally demanding quantum-mechanical calculations, being practically limited to short timescales and few atoms. For larger systems, efficient, but much less reliable empirical force fields are used. Recently, machine learned force fields (MLFFs) emerged as an alternative means to execute MD simulations, offering similar accuracy as ab initio methods at orders-of-magnitude speedup. Until now, MLFFs mainly capture short-range interactions in small molecules or periodic materials, due to the increased complexity of constructing models and obtaining reliable reference data for large molecules, where long-ranged many-body effects become important. This work proposes a general approach to constructing accurate MLFFs for large-scale molecular simulations (GEMS) by training on "bottom-up" and "top-down" molecular fragments of varying size, from which the relevant physicochemical interactions can be learned. GEMS is applied to study the dynamics of alanine-based peptides and the 46-residue protein crambin in aqueous solution, allowing nanosecond-scale MD simulations of >25k atoms at essentially ab initio quality. Our findings suggest that structural motifs in peptides and proteins are more flexible than previously thought, indicating that simulations at ab initio accuracy might be necessary to understand dynamic biomolecular processes such as protein (mis)folding, drug-protein binding, or allosteric regulation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源