论文标题

晶体弹性特性的连续力学:基于投影手术形式的微观方法

Continuum mechanics for the elastic properties of crystals: Microscopic approach based on projection-operator formalism

论文作者

Miserez, Florian, Ganguly, Saswati, Haussmann, Rudolf, Fuchs, Matthias

论文摘要

我们提出了非理想有序固体连续力学定律的微观推导,包括耗散,缺陷扩散和热传输。起点是古典多体哈密顿人。该方法依赖于Zwanzig-Mori投影操作员形式主义将微观波动与热力学衍生物和运输系数联系起来。通过Bogoliubov的不平等实施的保护定律和自发对称性破坏,决定了慢变量的选择。相互空间中的密度波动编码位移场和缺陷浓度。等温和绝热弹性常数是从平衡相关性获得的,而传输系数则以绿色kubo公式给出,为它们在原子模拟或胶体实验中的测量提供了基础。将方法和结果与文献中的其他人进行了比较。

We present a microscopic derivation of the laws of continuum mechanics of nonideal ordered solids including dissipation, defect diffusion, and heat transport. Starting point is the classical many-body Hamiltonian. The approach relies on the Zwanzig-Mori projection operator formalism to connect microscopic fluctuations to thermodynamic derivatives and transport coefficients. Conservation laws and spontaneous symmetry breaking, implemented via Bogoliubov's inequality, determine the selection of the slow variables. Density fluctuations in reciprocal space encode the displacement field and the defect concentration. Isothermal and adiabatic elastic constants are obtained from equilibrium correlations, while transport coefficients are given as Green-Kubo formulae, providing the basis for their measurement in atomistic simulations or colloidal experiments. The approach and results are compared to others from the literature.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源