论文标题
努力告知路线图(EIRM*):通过积极重复验证工作,有效渐近最佳的多样性计划
Effort Informed Roadmaps (EIRM*): Efficient Asymptotically Optimal Multiquery Planning by Actively Reusing Validation Effort
论文作者
论文摘要
多样性规划算法在单个搜索空间中找到各种不同的起点和目标之间的路径。它们旨在通过在计划查询中重复使用信息来有效地做到这一点。可以在搜索之前或期间计算此信息,并且通常包括有效路径的知识。使用已知的有效路径来解决单个计划查询要比找到一个全新的解决方案所花费的计算工作要少。这允许多算法(例如PRM*)在许多问题上都超过单一问题算法(例如RRT*),但是它们的相对性能取决于重复使用的信息。尽管如此,很少有多Qualery计划者明确地寻求最大程度地提高路径重复使用,因此,许多计划者并没有始终如一地超过单质量替代方案。本文介绍了努力的通知路线图(EIRM*),这是一种几乎渐近的最佳多样性计划算法,明确优先考虑重复使用计算工作。 Eirm*使用非对称双向搜索来识别可能有助于解决单个计划查询的现有路径,然后使用此信息来订购其搜索并减少计算工作。这使其可以在经过测试的抽象和机器人多交易计划问题上的最先进的计划算法找到最高级别的初始解决方案。
Multiquery planning algorithms find paths between various different starts and goals in a single search space. They are designed to do so efficiently by reusing information across planning queries. This information may be computed before or during the search and often includes knowledge of valid paths. Using known valid paths to solve an individual planning query takes less computational effort than finding a completely new solution. This allows multiquery algorithms, such as PRM*, to outperform single-query algorithms, such as RRT*, on many problems but their relative performance depends on how much information is reused. Despite this, few multiquery planners explicitly seek to maximize path reuse and, as a result, many do not consistently outperform single-query alternatives. This paper presents Effort Informed Roadmaps (EIRM*), an almost-surely asymptotically optimal multiquery planning algorithm that explicitly prioritizes reusing computational effort. EIRM* uses an asymmetric bidirectional search to identify existing paths that may help solve an individual planning query and then uses this information to order its search and reduce computational effort. This allows it to find initial solutions up to an order-of-magnitude faster than state-of-the-art planning algorithms on the tested abstract and robotic multiquery planning problems.