论文标题
弗雷德金楼梯:具有有限频drude峰的可集成系统
The Fredkin staircase: An integrable system with a finite-frequency Drude peak
论文作者
论文摘要
我们介绍并探索一个可相互作用的蜂窝自动机,即弗雷德金楼梯,该楼梯不在该自动机的现有分类之外,并且似乎超出了任何现有的伯特可溶解模型的结构。弗雷德金的楼梯有两个弹道繁殖的准植物,每个都有无限的物种。尽管存在弹道准颗粒,但在华盛顿特区,电荷传输是扩散的。极限,尽管具有高度非高斯动态结构因子。值得注意的是,该模型表现出电流的持续时间振荡,从而导致A.C.中的Delta功能奇异性(Drude Peak)。在非零频率下的电导率。我们在分析上构建了一套与随时间进化运营商进行反对的广泛的操作员;这些操作员的存在都证明了模型的整合性,并使我们能够降低这种有限频率奇异性的重量。
We introduce and explore an interacting integrable cellular automaton, the Fredkin staircase, that lies outside the existing classification of such automata, and has a structure that seems to lie beyond that of any existing Bethe-solvable model. The Fredkin staircase has two families of ballistically propagating quasiparticles, each with infinitely many species. Despite the presence of ballistic quasiparticles, charge transport is diffusive in the d.c. limit, albeit with a highly non-gaussian dynamic structure factor. Remarkably, this model exhibits persistent temporal oscillations of the current, leading to a delta-function singularity (Drude peak) in the a.c. conductivity at nonzero frequency. We analytically construct an extensive set of operators that anticommute with the time-evolution operator; the existence of these operators both demonstrates the integrability of the model and allows us to lower-bound the weight of this finite-frequency singularity.