论文标题

分号:半监督的曲线结构分割

SemiCurv: Semi-Supervised Curvilinear Structure Segmentation

论文作者

Xu, Xun, Nguyen, Manh Cuong, Yazici, Yasin, Lu, Kangkang, Min, Hlaing, Foo, Chuan-Sheng

论文摘要

曲线结构细分的最新工作主要集中在骨干网络设计和损失工程上。收集标签数据的挑战是一个昂贵且劳动密集的过程,已经忽略了。虽然标记的数据很昂贵,但通常很容易获得未标记的数据。在这项工作中,我们提出了曲线结构分割的半监督学习(SSL)框架Semicurv,该框架能够利用这种未标记的数据来减轻标签负担。我们的框架解决了以半监督方式制定曲线分段的两个关键挑战。首先,为了充分利用基于一致性的SSL的功能,我们引入了几何变换,作为强数据增强,然后通过可区分的反变换来对齐分割预测,以便能够计算Pixel-wise Ontermity。其次,未标记数据上传统的均方根误差(MSE)容易折叠预测,并且此问题加剧了严重的类失衡(背景像素更多)。我们提出了N对一致性损失,以避免对未标记数据的微不足道预测。我们在六个曲线分段数据集上评估了SemicUrv,发现不超过标记的数据的5%,相对于其完全监督的对应物,它的性能近95%。

Recent work on curvilinear structure segmentation has mostly focused on backbone network design and loss engineering. The challenge of collecting labelled data, an expensive and labor intensive process, has been overlooked. While labelled data is expensive to obtain, unlabelled data is often readily available. In this work, we propose SemiCurv, a semi-supervised learning (SSL) framework for curvilinear structure segmentation that is able to utilize such unlabelled data to reduce the labelling burden. Our framework addresses two key challenges in formulating curvilinear segmentation in a semi-supervised manner. First, to fully exploit the power of consistency based SSL, we introduce a geometric transformation as strong data augmentation and then align segmentation predictions via a differentiable inverse transformation to enable the computation of pixel-wise consistency. Second, the traditional mean square error (MSE) on unlabelled data is prone to collapsed predictions and this issue exacerbates with severe class imbalance (significantly more background pixels). We propose a N-pair consistency loss to avoid trivial predictions on unlabelled data. We evaluate SemiCurv on six curvilinear segmentation datasets, and find that with no more than 5% of the labelled data, it achieves close to 95% of the performance relative to its fully supervised counterpart.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源