论文标题
在无张力或无情的kardar-parisi-zhang方程中的异常弹道缩放
Anomalous ballistic scaling in the tensionless or inviscid Kardar-Parisi-Zhang equation
论文作者
论文摘要
一维Kardar-Parisi-Zhang(KPZ)方程正在成为具有较强相关性的非平衡,空间扩展,经典和量子系统的缩放的总体范式。最近的分析解决方案发现了有关其缩放指数和波动统计数据的丰富结构。但是,零表面张力或零粘度案例避免了这种分析解决方案,并且仍然不理解。使用数值模拟,我们阐明了与粘性案例不同的定义定义的通用类别,尽管对局部相互作用以及与时间相关的噪声和弹道动力学的系统有期望,但具有本质上异常的动力学粗糙度。后者可能与最近的量子自旋链实验有关,后者在不同条件下测量KPZ和弹道弛豫。我们在以前的离散界面增长模型与各向同性渗透相关的先前离散界面增长模型中随之而来的缩放指数集,并表明它描述了与嘈杂的korteweg-de vries方程相关的其他连续体系统的波动。在此过程中,我们还阐明了相关随机汉堡方程的通用类别。
The one-dimensional Kardar-Parisi-Zhang (KPZ) equation is becoming an overarching paradigm for the scaling of nonequilibrium, spatially extended, classical and quantum systems with strong correlations. Recent analytical solutions have uncovered a rich structure regarding its scaling exponents and fluctuation statistics. However, the zero surface tension or zero viscosity case eludes such analytical solutions and has remained ill-understood. Using numerical simulations, we elucidate a well-defined universality class for this case that differs from that of the viscous case, featuring intrinsically anomalous kinetic roughening, despite previous expectations for systems with local interactions and time-dependent noise and ballistic dynamics. The latter may be relevant to recent quantum spin chain experiments which measure KPZ and ballistic relaxation under different conditions. We identify the ensuing set of scaling exponents in previous discrete interface growth models related with isotropic percolation, and show it to describe the fluctuations of additional continuum systems related with the noisy Korteweg-de Vries equation. Along this process, we additionally elucidate the universality class of the related inviscid stochastic Burgers equation.