论文标题

Feynman棘轮离散模型中电流的完整计数统计和波动定理

Full Counting Statistics and Fluctuation Theorem for the Currents in the Discrete Model of Feynman's Ratchet

论文作者

Wu, Yu-Xin, Gu, Jiayin, Quan, H. T.

论文摘要

我们提供了关于Jarzynski和Mazonka在1999年提出的Feynman棘轮的离散模型中电流波动的详细研究。确定了两个宏观电流,并使用Schnakenberg的图形分析确定了相应的亲密关系。我们还研究了这两种电流的全面计数统计数据,并表明了波动定理的联合概率分布。此外,在此模型中,在数值上证明了波动散落关系,onsager互惠关系及其非线性概括。

We provide a detailed investigation on the fluctuations of the currents in the discrete model of Feynman's ratchet proposed by Jarzynski and Mazonka in 1999. Two macroscopic currents are identified, with the corresponding affinities determined using Schnakenberg's graph analysis. We also investigate full counting statistics of the two currents and show that fluctuation theorem holds for their joint probability distribution. Moreover, fluctuation-dissipation relation, Onsager reciprocal relation and their nonlinear generalizations are numerically shown to be satisfied in this model.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源