论文标题

单光学神经网络

Single-Shot Optical Neural Network

论文作者

Bernstein, Liane, Sludds, Alexander, Panuski, Christopher, Trajtenberg-Mills, Sivan, Hamerly, Ryan, Englund, Dirk

论文摘要

随着深层神经网络(DNN)的发展以解决日益复杂的问题,它们正受到现有数字处理器的延迟和功耗的限制。为了提高速度和能源效率,已经提出了专门的模拟光学和电子硬件,但是可扩展性有限(输入矢量长度$ k $的数百个元素)。在这里,我们提出了一个可扩展的,单层的模拟光学处理器,该处理器使用自由空间光学器件可重新配置输入向量和集成的光电,用于静态,可更新的加权和非线性 - 具有$ K \ $ k \ \ 1,000美元及以上。我们通过实验测试MNIST手写数字数据集的分类准确性,在没有数据预处理或重新培训的硬件上实现了94.7%(地面真相96.3%)。我们还确定吞吐量($ \ sim $ 0.9 examac/s)的基本上限,由最大光带宽设置,然后大大增加误差。我们在兼容CMOS兼容系统中宽光谱和空间带宽的组合可以实现下一代DNN的高效计算。

As deep neural networks (DNNs) grow to solve increasingly complex problems, they are becoming limited by the latency and power consumption of existing digital processors. For improved speed and energy efficiency, specialized analog optical and electronic hardware has been proposed, however, with limited scalability (input vector length $K$ of hundreds of elements). Here, we present a scalable, single-shot-per-layer analog optical processor that uses free-space optics to reconfigurably distribute an input vector and integrated optoelectronics for static, updatable weighting and the nonlinearity -- with $K \approx 1,000$ and beyond. We experimentally test classification accuracy of the MNIST handwritten digit dataset, achieving 94.7% (ground truth 96.3%) without data preprocessing or retraining on the hardware. We also determine the fundamental upper bound on throughput ($\sim$0.9 exaMAC/s), set by the maximum optical bandwidth before significant increase in error. Our combination of wide spectral and spatial bandwidths in a CMOS-compatible system enables highly efficient computing for next-generation DNNs.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源