论文标题

$ \ boldsymbol {o(n)} $ CFT中混合相关器的分析引导程序

Analytic bootstrap of mixed correlators in the $\boldsymbol{O(n)}$ CFT

论文作者

Bertucci, Francesco, Henriksson, Johan, McPeak, Brian

论文摘要

我们使用大型自旋扰动理论和Lorentzian倒置公式来计算订单-U \ varepsilon $校正$ o(n)$ o(n)$ wilson-fisher cft中的混合相关器,价格为$ 4- \ varepsilon $ dimensions。特别是,我们发现所有涉及$φ$和$φ^2 $的相关器中出现的缩放尺寸和平均OPE系数,$ o(n)$的单元和对称的Treaceless表示中的$φ^2 $。我们将一些计算扩展到下一个订单,并找到订单-U \ Varepsilon^2 $数据,用于$ n = 1 $的ISING案例的许多数量。一路上,我们讨论了出现的几个有趣的技术方面,包括对混合保形块进行跨越校正,对反转公式中更高曲折的投影以及多重重组。

We use large spin perturbation theory and the Lorentzian inversion formula to compute order-$\varepsilon$ corrections to mixed correlators in the $O(n)$ Wilson-Fisher CFT in $4 - \varepsilon$ dimensions. In particular, we find the scaling dimensions and averaged OPE coefficients appearing in all correlators involving $φ$ and $φ^2$, for $φ^2$ in both the singlet and symmetric traceless representations of $O(n)$. We extend some computations to the next order, and find order-$\varepsilon^2$ data for a number of quantities for the Ising case at $n = 1$. Along the way, we discuss several interesting technical aspects which arise, including subleading corrections to mixed conformal blocks, projections onto higher twists in the inversion formula, and multiplet recombination.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源